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SUMMARY Location theory on networks is concerned with the
problem of selecting the best location in a specified network for
facilities. In networks, the distance is an important measure to
quantify how strongly related two vertices are. Mereover, the
capacity between two vertices is also an important measure. In
this paper, we define the location problems called the p-center
problem, the »-cover problem and the p-median problem on
undirected flow networks. We propose polynomial time algorithms
to solve these problems.

1. Introduction

Location theory™ on networks is concerned with
the problem of selecting the best location in a specified
network for facilities. Many studies for the theory-have
been done. Most of these studies treat location problems
on networks from the standpoint of measuring the
closeness between two vertices by the distance between
two vertices. On the other hand, location problems on
networks from the standpoint of measuring the close-
ness between two vertices by the capacity (maximum
flow value) between two vertices have not been studied
yet.

This paper concerns location problems on undirect-
ed flow networks. We define the location problems called
the p-center problem, the #-cover problem and the
p-median problem on undirected flow networks. We
propose polynomial time algorithms to solve these plob-
lems.

2. Definitions

Let us consider an undirected flow network N=(V,
E, wy) such that V, E and wy are the vertex set, the
edge set and the function assigning a positive real
number wx{(e), called edge-capacity, to each edge e€E,
respectively. The capacity of minimum cutset between
two vertices x and y in N is called the capacity between
z and y, denoted by ¢(x, ). Especially, let g(x, x)=0co.
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For a subset U of V, let

(U, x)=max{g(z, y)lyE U}
and

ex(U)=min{g(U, x)lx€ V}.

en(U) is called the eccentricity of U which is
concerned with capacity (we simply call en(U) the
eccentricity of U, hereafter).

For 1=p<|V], a subset U of V such that |U|=p
and en(U)=max{ex(U)U'CV,|U|=p} is called a
p-center of N. We simply call the problem of finding a
p-center the p-center problem.

For a positive real number 7, let

av(7)=min{|U|UCV, ex{U)=#}.

A subset U of V such that ex(U)=# and |U|=
gv(7) is called a #»-cover of N. We simply call the
problem of finding a »-cover the »-cover problem.

Let

L‘N(U)=IE§_U9( U, .17)

t(U) is called the transportation number® of U.

For 1=<p<|V], a subset U of V such that |U|=p
and tw(U)=max{t~x(UNU'CV,|U’|=p} is called a p-
median of N. We simply call the problem of finding a
p-median the p-median problem.

In a communication network, vertices represent
terminal computers and edges represent links between
computers. In this network, consider how we assign
some data to files. We assume that the delay time can be
ignored in this network, In this case, for each terminal
computer pair, the number of links between the com-
puters is the measure representing the closeness
between the computers. Location theory on flow net-
works is applicable to the above case.

For example, let us consider the network N shown
in Fig. 1 where the value attached to each edge repre-
sents the edge capacity. Let U be {x1, x3}. Since

9(U, z2)=g(x1, 22)=6,
g( U, $4):g(173, :I?4):5 and
(U, z5)=g(x1, 25)=6,

the eccentricity and the transportation number of U are
following,
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Fig. 1 A flow network N.

(b) A tree flow network 7.

Fig. 2 A flow network and its tree flow network.

ex(U)=min{6, 5, 6}=5 and
W(U)=6+5+6=17.

Location problems on networks from the standpoint
of measuring the closeness between two vertices by the
distance between two vertices are well-known and it is
also well-known that the p-center, the »-cover and the
p-median problems are NP-hard problems®®,

For any undirected flow network N, there exists a
tree flow network T such that gn(x, y)=gr(z, y) for
any vertex pair and 7" can be obtained by solving | V]—1
maximum flow problems®. The time complexity to
construct T from N is O(|V|s(JV|, |E])) where |V|=
|V(N)I, |E|=|E(N)| and s(| V], |E]) is the time required
to solve a maximum flow problem in N. The best time
bound for s(| V|, |E|) known to date is O(| V| | E|log(| V |2/
|[ED)®. Therefore O(| VIs(| V1, [E]))=0( V[ |Ellog(| VI%/
|ED).

For example, let us consider the network N shown
in Fig.2(a). Then, a tree flow network 7T such that
gn(z, y)=gr(x, y) for any vertex pair is shown in Fig. 2
(b). So we consider location problems on tree flow
networks for flow networks, hereafter.

3. Results
3.1 The p-Center Problem and the »-Cover Problem

This section concerns the p-center problem and the
r-cover problem.

[Theorem 1] Let T be a tree flow network with £(T)
={(z1, »1), -+, (xm, yn)} such that w(zi, 11)= - = w(xn,
yn) and let T3, -+, T be all connected componants of 7”7
=T —{(Zn-p+2, ynp+2), = ,(Zm, ym)}. Then, U={z, -,
zp} is a p -center of T, where 2 V(T}) for each i , 1<
i=p.

(proof) Let w(Zm-p+1, Yym-pr1)=a. For any x€ V(T),
9(U, x)=a, because g(x, z)Za if = belongs to a con-
nected component 7;. Let 75 be a connected component
that includes an edge (Zn—p+1, Ym-p+1). Without loss of
generality, we may assume that z; belongs to a con-
nected component including Zm—p+1 in Ty—{(Zn-pss,
Ym-p+1)}. Since g(U, ym-p+1)=g(2;, Yn-p+1)=a, er(U)=a.
The eccentricity of U does not depend on how to choose
z; in each connected component 7; and the value is a.

Let U’ be a subset of V(T') and |U’|=p. We assume
that there exists a connected component 7} such that
V(T:)NU'=¢ in T’. Since, for a vertex x in T: and
each element z in U’, the path from x to z in T includes
an edge (Tm-piz, Ym-p+2) OF an edge (Tm—pis, Ym—pss) OF
or an edge (Zm, yn), er(U)=<a. Therefore U is a p-
center of 7. []

For example, let us consider the network 7" shown
in Fig.2(b) and let p=3. The subnetwork 7’ is
obtained by deleting the edge set {(x, x2), (x4, 27)} (see
Fig. 3). Therefore, from Theorem 1, U={x, 22, 2/} is a
3-center of T.

The time complexity of sorting all edges in order of

size of edge weights is O(]V]log|V]), where |V|=
|V(T)l. We can choose U in O(|V|) time from 7’ by
depth-first search®. Therefore, a p-center of a tree flow
network 7 can be obtained in O(]V|log |V]) time.
[Theorem 2] Let T be a tree flow network and let T3,
-++, T be all connected components of 77'=T —{(z, y)E
E(T)|lw(zx, y)<r}. Then, U={z, -+, 24} is a »-cover of
T, where z€ V(T)) for each i , 1<i<gq.
(proof) Clearly, ex(U)=#. Let U’ be a subset of V(T)
where |U’'|<|U|. There exists T such that V(T)N U =
¢ in 7. Since, for a vertex x in 7 and each element z
of U, the path from x to z in T includes an edge whose
weight is less than 7, g(U’, x)< 7. Since e-(U) <7, U is
a r-cover.

For example, let us consider the network 7" shown
in Fig.2(b) and »=5, edges whose weights are less
than 5 are (a1, xs), (x4, 27) and (a7, xs). So, the
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Fig. 4 A network T —{(a, z2), (24, 22), (2, xs)}.

subnetwork 7 is obtained by deleting these edges(see
Fig. 4). Therefore, from Theorem 2, U={x1, x2, 27, xs} is
a 5-cover of T.

The time complexity of constructing 77 is O(| V).
The time complexity of choosing U is O(M). Therefore,
a r-cover of a tree flow network 7 can be obtained in
O(| V) time.

From Theorem 1 and Theorem 2, a p-center and a
v-cover of a flow network, which is not necessary a tree,
can be obtained in O(| V| s (| V], |E])) time.

3.2 The p-Median Problem

This section concerns the p-median problem. In an
undirected flow network N, let

sn(p)=max{t(UUCV,|U|=p}.

[Theorem 3] Let T be a tree flow network and (zi, 2»)
be a minimum weight edge of 7. In T —{(z, )}, let T
be the connected component that includes z; and U;C
V( Ti) (lzl, 2, Uz#(}s)
Then f:r( U1 U Uz): tT1( U1)+ trz( Uz)

(proof) From the property of trees, g(x,y) is the
minimum value w(e) such that the edge e belongs to the
path P from z to y. Since (2, 22) is a minimum weight
edge of T, g(z, y)=w(z, z).

Let V(T)—(ThU Us)={z1, "+, xs}.
l‘T( ou U2>:i:§. kg( U Uz, l‘z’)

=>max{g(Uh, z:), g(Us, x:)}.

If x:€ V(Th) then g(Us, x:)=w(z, z2). Hence g(Uy, x:)=
g( Uz, .Z‘z').

If ;€ V(T3) then g(U, x:) < g(Us, x:). Therefore
> max{g( U, xi), g( Us, x,)}

1991
:Iieg(rl)g( UI, $i> +IJE;(T2)Q( UZ’ xj)
=tr(Uh) + tro Ua). ]

From Theorem 3, the transportation number of a
subset of V(T) is equal to the sum of the transportation
numbers in each connected component in T —{(z, 2)}.
Therefore, in the case of given sri(l), sr1(2),--, sri(t),
sr2(1),+ and sr2(%) where t;=min{p, |V(T)I} (i=1, 2),
sr(p) is given by the following expression.

sr(p)=max{sri(#) +srAp— 1),

sri(th+1) +sr(p—H—1),
Srl(l)— fz)JrSTz(lfz)}, (1)

where STz‘(O): w(Zi, Zz)l V( Tz)l (Z.Z]., 2)

Hence, if 7-medians of 71 (i=1,--, #) and j-medians
of Ty (j=1,---, ;) are given, then we can obtain a
p-median of 7.

For example, let us consider the network N shown
in Fig. 2(b) and let p=3. The minimum weight edge of
T is (x4, z7) and its value is 2. In T —{(z4, z7)}, let T3 be
the connected component that includes x4 and 7 be the
connected component that includes x; (see Fig.5). ti=
min{p, | V(Ty)|}=min{3, 6}=3 and t=min(3, 2}=2. sn
and sr; are given as follows.

sri{0)=w(xs, )| V(T)|=2X6=12,
sri(D)=27 (tri({z2})=27),
st2)=23  (tri({z,, 22})=23),
s11(3)=18  (¢tr:i({a, 2, 23})=18),
s7200)=w(xs, 27)| V(T2)|=2x2=4,
sra(l)=4 (tr{z:})=4),
s12(2)=0 (tro{z7, 28})=0).
From above values, We can obtain s7(3).
s7(3)=max{sr:1(3)+s72(0),

s71(2) +s72(1), sr1(1) +572(2)}

=max{18+4, 23+4, 27+0}

Fig. 5 A network T —{(xs, x7)}.
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=27.

Therefore, {x1, 2} U{x:} is a 3-median of T{x}U
{7, 25} is also a 3-median of 7).
The following algorithm SUB-MEDIAN (p, T, Tz,
(21, 22)), where p=<|V(T)U V(Ty)|, z: belongs to T; (i=
1,2) and (2, 22) is a minimum weight edge of 7, is the
algorithm to obtain a p-median of T (=T1U To+{(z,
2z2)}), when each j-median Setr (/) and its transportation
number s7:(j) of T; are given.
procedure SUB-MEDIAN (p, Th, T, (21, 22))
begin
st(0) 1 =w(a, 2)| V(T ;
s72(0) 1 =w(z, 2)|V(T)|;
h: =min{| V(T 8} ; &:
So . :0; ].01 :0;
for j=p—1f, to 4 do

=min{| V(TY)|, p} ;

[ORORIPRONI)]
I N S

begin
S 6 if SoéSrl(j)+STz(P_j) then
begin
S 7 So: :Srl(j)+ST2(p_j);
S 8 Joi =73
end
end
S 9 sr(p): =s0;
S 10 Setr(p): =Setr1(jo) USetra(p— jo)

(* Setr(p) represents a p-median of 7" %)

end

Since S5 requires O(p), the time complexity of
SUB-MEDIAN is O(p).

Using above algorithm, a p-median of a tree flow
network 7T can be obtained by the following algorithm
MEDIAN (T, p).

procedure MEDIAN (7', p)

begin
M 1 sort all the edges in order of size of edge
weights; (k¢ let w(xy, y0) = Zw(xm, yn) *)
let 7% be a null network whose

vertex set is V(T);
M 3 for each z= V(T) do
begin

M 2

M 4 let T be the connected
component includes z in 7y ;
M5 srz(1) 1 =0; Setr(1): ={x};
end
M 6 for ;=1 to m do
begin
M7 let Tz be the connected
component includes x; in 7o ;
M 8 let Ty: be te connected
component includes y; in 7o ;
M9 £ =min{p, | V{Te)|+|V(Tul} ;
M 10 for 2=1 to ¢ do
M1l SUB-MEDIAN (&, T, Ty, (x:, ¥2)) ;
M 12 To: = To+{(l‘z‘, yz)}

end
end.

In M1, sorting of edges requires O(| V[log| V|) where
| Vi=|V(T)|. M6 M10 and M1l require O(|V]), O(p),
and O(p), respectively. Therefore the time complexity
of MEDIAN is O(} Vllog| V|+ 3 V). So, a p-median of a
flow network N, which is not necessary a tree, can be
obtained in O(|V|s(| V], |E])) time.

4. Conclusion

In this paper, we have given the difinitions of loca-
tion problems on undirected flow networks and we have
proposed the O(|V|s(|V], |E])) time algorithms to solve
the p-cnter problem, the »-cover problem and the p-
median problem on an undirected flow network N,
where |V|=|V(N)|, |E|=|E(N)| and s(|V],|E]) is the
time required to solve a maximum flow problem in N.
The algorithms to solve these problems are applicable
to the assignment of files in a computer network, where
the vertices represent terminal computers and the edges
represent links between computers.

For a directed flow network XN, there does not
always exist a tree flow network 7" such that gn(z, ¥)
=gr(x, y) for any vertex pair. So, the same discussion
as in this paper does not apply to directed flow net-
works. The study of location problems on directed flow
networks is a future problem.
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