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Abstract—This paper presents a new general four-component 

scattering power decomposition method by implementing a set of 
unitary transformations for the polarimetric coherency matrix. 
There exist 9 real independent observation parameters in the 3 x 
3 coherency matrix with respect to the second order statistics of 
polarimetric information. The proposed method accounts for all 
observation parameters in the new scheme. It is known that the 
existing four-component decomposition method reduces the 
number of observation parameters from 9 to 8 by rotation of the 
coherency matrix, and that it accounts for 6 parameters out of 8, 
leaving 2 parameters (i.e., real and imaginary part of T13 
component) un-accounted for. By additional special unitary 
transformation to this rotated coherency matrix, it became 
possible to reduce the number of independent parameters from 8 
to 7. After the unitary transformation, the new four-component 
decomposition is carried out that accounts for all parameters in 
the coherency matrix including the remaining T13 component. 
Therefore, the proposed method makes use of full utilization of 
polarimetric information in the decomposition.  

   The decomposition also employs an extended volume 
scattering model, which discriminates the volume scattering 
between dipole and dihedral scattering structures caused by the 
cross-polarized HV component. It is found that the new method 
enhances the double bounce scattering contributions over the 
urban areas compared to those of the existing four-component 
decomposition, resulting from the full utilization of polarimetric 
information.  
 

Index Terms—Radar polarimetry, scattering power 
decomposition, polarimetric synthetic aperture radar 

I. INTRODUCTION 
 
CATTERING power decompositions have been a research 
topic in radar polarimetry for the analysis of fully 

polarimetric synthetic aperture radar data [1]-[14]. There exist 
9 real independent polarimetric parameters in the 3 x 3 
coherency or covariance matrices [2]. Physical model-based 
scattering power decomposition tries to account for these 
polarimetric parameters as much as possible in the 
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decomposition. The original 3-component decomposition was 
proposed by Freeman and Durden [3] under the reflection 
symmetry condition that the cross-correlation between the co- 
and cross-polarized scattering elements are close to zero for 
natural distributed objects. This method accounts for 5 terms 
out of 9 independent parameters. In order to accommodate the 
decomposition scheme for more general scattering cases 
encountered in urban areas or by more complicated geometric 
scattering structures, Yamaguchi et al. [4] have added a helix 
scattering term and proposed the four-component 
decomposition. This helix power is generated by the 
imaginary part of T23 = SHH - SVV SHV*  in the coherency 
matrix [5], and the related method accounts for 6 parameters 
out of 9, leaving 3 un-accounted. Then, by using the rotation 
of coherency matrix, An et al. [6], Lee and Ainsworth [1] and 
Yamaguchi et al. [7] reduced the number of polarization 
parameter from 9 to 8. These methods yielded better 
decomposition results by accounting for 6 parameters out of 8 
[8]. The un-accounted parameters are the real and imaginary 
part of T13 = SHH + SVV SHV

*  in the coherency matrix. They 
still remain un-accounted in any of the known physical 
scattering model-based decompositions [1]-[8]. 

In this paper, a new general four-component decomposition 
method is proposed using a special unitary transformation to 
the rotated coherency matrix, which has been used in the 
existing four-component decomposition [7]. Since unitary 
transformations do not change any information included in the 
coherency matrix, the rotated coherency matrix is transformed 
by a special unitary transformation to eliminate the T23 
element. The new features are the reduction in the number of 
observed polarization parameters from 8 to 7, and accounting 
for the remaining T13 element. This new four-component 
decomposition finally accounts for 7 terms out of 7 
polarimetric parameters. It is shown that this method yields 
accurate and/or similar decomposed images compared with 
those by the existing four-component decomposition [7], [8].  

In section II, a basic principle for reduction of polarization 
parameters is explained by implementing the unitary 
transformation for the coherency matrix. Based on the unitary 
transformation of the rotated coherency matrix, a new 
4-component scattering power decomposition scheme is 
carried out in section III. At this decomposition stage, all 
elements of the coherency matrix are utilized to derive 
four-component scattering powers, i.e., surface, double bounce, 
volume, and helix scattering powers. An extended volume 
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scattering model is also incorporated to discriminate against 
the volume scattering between dipole and dihedral scatterings 
caused by the cross-polarized HV component [8]. Section IV 
shows some decomposition results in comparison with the 
existing 4-component scattering power decomposition. A 
conclusion is given in Section V.  

 

II. BASIC PRINCIPLE FOR DOUBLE UNITARY 
TRANSFORMATION 

By acquiring the scattering matrix data sets, the 
corresponding coherency matrix can be recovered, which 
retains the second order statistics of polarimetric information. 
The ensemble average of the coherency matrix is given as 

 

      

  

T = k p k p
† =

T11 T12 T13
T21 T22 T23
T31 T32 T33

                     (1) 

 
where † denotes complex conjugation and transpose, < > 
denotes ensemble average, and the Pauli vector kp is defined as 
 

          

  

k p = 1
2

SHH + SVV
SHH - SVV

2 SHV

                        (2) 

 
There are 9 independent and real-valued polarization 

parameters included in the general form of the coherency 
matrix (1). 

Unitary transformation preserves all information contained 
in the 3 x 3 positive definite coherency matrices without loss 
of generality. This guarantees that observed polarimetric 
information remains in the coherency matrix after unitary 
transformation. Using this mathematical property, it is 
possible to transform the measured coherency matrix (1) to a 
new one with T23 = 0 as 

 

      

  

T ' =
T11

' T12
' T13

'

T21
' T22

' 0
T31

' 0 T33
'

  .                 (3) 

 
If the T23 element is eliminated, the number of independent 
information in the coherency matrix becomes 7, for which 
new scattering power decomposition is carried out. The reason 
why we choose T23 element is that the helix scattering is 
directly related to this term. In order to achieve T23 = 0, the 
unitary transformation is implemented twice. 

The first one is the rotation of around radar line of sight [7] 
 

              
  

T(!) = R(!) T R(!) †       (4) 
 
with a unitary rotation matrix,

  
           

  

R(!) =
1 0 0
0 cos 2! sin 2!
0 - sin 2! cos 2!

 .       (5) 

 
The angle 

  

! is chosen as to minimize the T33 element [7] 

               2 = 12 tan
- 1 2 Re T23

T22 - T33
 .              (6) 

After this rotation, the T23 element becomes purely imaginary, 
 

        
  

T23 ! = j Im T23 .                               (7) 
 
Then, the second unitary transformation is employed such that 
 

       
  

T(!) = U(!) T(") U(!) †               (8) 
 
with a special unitary transform matrix, 
 

   
  

U(!) =
1 0 0
0 cos 2! j sin 2!
0 j sin 2! cos 2!

           (9) 

 
The angle ϕ is derived so as to minimize the  element in a 
way similar to [7] 
 

   

2! = 1
2 tan- 1 2 Im T23 "

T22 " - T33 "
          (10) 

 
This unitary transformation yields the coherency matrix 

element as 
 

  

T11 ! = T11 " = T11    

T12 ! = T21
* ! = T12 " cos 2! - j T13 " sin 2!    

T13 ! = T31
* ! = T13 " cos 2! - j T12 " sin 2!  

T22 ϕ = T22 θ cos2 2ϕ + T33 θ sin2 2ϕ + Im T23 θ sin 4ϕ    

T23 ! = T32
* ! = Re T23 "  

T33 ϕ = T33 θ cos2 2ϕ + T22 θ sin2 2ϕ - Im T23 θ sin 4ϕ 
                                                                                      (11) 

 
This second unitary transformation forces the T23 element to 

be zero using (11) and (7). 
 
  

T23 ! = Re T23 " = Re j Im T23 = 0        (12) 
 
Hence, the T23 element is completely eliminated as shown in 

(12). Therefore, it can be theoretically reduced the number of 
independent polarization parameters from 9 to 7 by unitary 
transform twice as shown in (3).  

It should be noted that the T13 element still remains as a 
complex number, which has not been incorporated in any 
physical model-based decomposition. 

 

III. NEW FOUR-COMPONENT SCATTERING POWER 
DECOMPOSITION 

In this section, a new four-component scattering power 
decomposition is presented using (8). The four-component 
powers represent surface scattering power Ps, double bounce 
scattering power Pd, volume scattering power Pv and helix 
scattering power Pc. Illustrative examples for these powers are 
shown in Fig. 1 which are well known from the pertinent 
literature [1]-[9].  

 

T33
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Fig. 1. Illustrative examples of four-component scattering powers: surface 
scattering power Ps, double bounce scattering power Pd, volume scattering 
power Pv and helix scattering power Pc. 

 
The starting point is the 4-component decomposition after 

the rotation (4), expressed as  
 

  

T(!) = fs T surface + fd T double + fv T vol + fc T helix 
                      (13) 
 

where fs, fd, fv and fc are expansion coefficients to be 
determined, and the four sub-matrices represent physical 
scattering models in the form of coherency matrix description 
[7], [8]. The details are given in reference [7]. In this 
expression, 6 terms out of 8 parameters are accounted for, for 
which the un-accounted 2 terms are real and imaginary parts 
of T13. Now we transform (13) using unitary transformation 
(8) so that the T13 element can be accounted for. The model 
expansion can be transformed from the rotated basis to the 
new unitary basis such that 
 
  

T(!) = U(!)  
   fs T surface + fd T double + fv T vol + fc T helix U(!) †

 
 
  

= fs T(!) surface + fd T(!) double  

+ fv T(!) vol + fc T(!) helix                                        (14) 
 

The expansion matrices on the right hand side of (14) after 
unitary transformation become as derived in detail next: 

A. Theoretical expansion matrices for scattering models 
The expansion matrix for surface scattering is expressed as 
 

     
  

T(!) surface = U(!) T surface U(!) †
 

           

  

= U(!)
1 " * 0
" " 2 0
0 0 0

U(!) †

 

           

  

=

1 ! *cos 2" - j! *sin 2"

!cos 2" ! 2 cos2 2" - j ! 2 sin 4"
2

j! sin 2" j ! 2 sin 4"
2 ! 2 sin2 2"

    (15) 

 
The double bounce scattering model is defined as 
 

   
  

T(!) double = U(!) T double U(!) †
 

       

  

= U(!)
" 2 " 0
"* 1 0
0 0 0

U(!) †

 

            

  

=

! 2 ! cos 2" - j! sin 2"

!*cos 2" cos2 2" - j sin 4"
2

j!*sin 2" j sin 4"
2 sin2 2"

     (16) 
 
The helix scattering model is written as 
 

   
  

T(!) helix = U(!) T helix U(!) †
 

            

  

= U(!) 1
2

0 0 0
0 1 ± j
0 +
" j 1

U(!) † 

            

  

= 1
2

0 0 0
0 1 ± sin4! ± j cos 4!

0 +
" j cos 4! 1 +

" sin4!

              (17)

 

 
B.  Four-component Decomposition Depending on the 

Volume Scattering Model 
 

Since there are 4 scattering models [8] for volume scattering, 
according to the generation of the cross-polarized HV term, 
the decomposition scheme is applied accordingly. For volume 
scattering caused by the HV component by vegetation, one of 
the following distributions is chosen based on the magnitude 
balance of |SHH|2 and |SVV |2 [8], i.e., 1) uniform distribution, 2) 
cosine distribution, or 3) sin distribution. 

 
1) Uniform distribution:  

  

p ! = 1
2"   

 

  

T(!) vol = U(!) 1
4

2 0 0
0 1 0
0 0 1

U(!) † = 14
2 0 0
0 1 0
0 0 1

   (18) 

 
The element relations after the unitary transformation (14) 

are expanded. The expansion of (14) leads to the following 
relations, 

 

   
  

T11
' = fs + fd ! 2 + 1

2 fv 

   
  

T22
' = fs ! 2 + fd cos2 2" + 1

4 fv + 1
2 fc 1 ± sin 4"  

   
  

T33
' = fs ! 2 + fd sin2 2" + 1

4 fv + 1
2 fc 1 +

# sin 4"  
   

  

T12
' = fs ! * + fd " cos 2# 

   
  

T13
' = - j fs ! * + fd " sin 2# 

   
  

T23
' = - fs ! 2 + fd sin 4" ± fc cos 4" = 0          (19) 

 
Arrangement of the element relations provides 5 equations 
with 6 unknowns ( , , fs, fd, fv, and fc) 
 

   
  

T11
' = fs + fd ! 2 + 1

2 fv               (20) 
   

  

T22
' + T33

' = fs ! 2 + fd + 1
2 fv + fc        (21) 
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T22
' - T33

' = fs ! 2 + fd cos 4" ± fc sin 4"   (22) 

   
  

T12
' + T13

' = fs! * + fd " cos 2# - j sin 2#  
 

  

= fs! * + fd " e# j 2$
         (23) 

   
  

fs ! 2 + fd sin 4" = ± fc cos 4"        (24) 
 
From (24) and (22) together with (11) and (21), fc and fv , and 
the corresponding powers Pc and Pv can be derived 
 

     

  

fc = Pc = T22
' - T33

' sin 4!

= 2 Im T23 " = 2 Im T23                          (25) 

     

  

fv = Pv = 2 T22
' + T33

' - T22
' - T33

' cos 4! - fc
= 2 2 T 33 " - fc     (26) 

 
Once fc and fv are determined, we have a set of 3 equations 

with 4 unknowns ( , , fs, and fd) 
 

   

fs + fd ! 2 = S
fs " 2 + fd = D
fs "* + fd ! = C          

(27) 

 

where    

   

S = T11
' - 1

2 fv

D = T22
' + T33

' - 1
2 fv - fc

C = T12
' + T13

' e j 2!

            (28a) 

 
(28a) can be further simplified using (11) as 
 

  

S = T11 ! - 1
2 Pv

D = T22 ! + T33 ! - 1
2 Pv - Pc

C = T12 ! + T13 !              

(28b) 

   or 

                   

  

S = T11 - 1
2 Pv

D = TP - Pv - Pc - S

C = T12 ! + T13 !                                  (28c) 
where TP is the total power. 

 
2) Cosine distribution: p = 12 cos  
 
   

T(!) vol = U 2(!) 1
30

15 - 5 0
- 5 7 0
0 0 8

U 2(!) †

 

     

   

= 1
30

15 - 5 cos 2! j 5 sin 2!

- 5 cos 2! 7 + sin2 2! j sin 4!
2

- j 5 sin 2! - j sin 4!
2 7 + cos2 2!

            (29) 
 
The expression (14) is expanded in the same way as in 1) 

uniform distribution. After the expansion and rearrangement, a 
similar set of 3 equations with 4 unknowns can be obtained. 

 

   

fs + fd ! 2 = S
fs " 2 + fd = D
fs "* + fd ! = C

                (30) 

where  

     

  

S = T11 - 1
2 Pv

D = TP - Pv - Pc - S

C = T12 ! + T13 ! + 1
6Pv

           

(31) 
and   

            

 

fc = Pc = 2 Im T23

fv = Pv = 15
8 2 T 33 ! - fc            (32) 

 
3) Sin distribution: 

  

p ! = 1
2 sin ! 

 
 

T(!) vol = U(!) 1
30

15 5 0
5 7 0
0 0 8

U(!) †

 

            

 

= 1
30

15 5 cos 2! - j 5 sin 2!

5 cos 2! 7 + sin2 2! j sin 4!
2

j 5 sin 2! - j sin 4!
2 7 + cos2 2!

      (33) 

 After a similar expansion of (14) and rearrangement, it can 
be obtained a similar set of 3 equations with 4 unknowns. 

 
   

fs + fd ! 2 = S
fs " 2 + fd = D
fs "* + fd ! = C

             (34) 

where 

                      

 

S = T11 - 1
2 Pv

D = TP - Pv - Pc - S

C = T12 ! + T13 ! - 1
6Pv   

                 

(35) 
and 

             

 

fc = Pc = 2 Im T23

fv = Pv = 15
8 2 T 33 ! - fc       (36) 

 
4) For volume scattering caused by oriented dihedral scatter: 
 
The following matrix is used [8], 
 

   

 

T(!) vol = U(!) 1
15

0 0 0
0 7 0
0 0 8

U(!) †
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= 1
15

0 0 0

0 7 + sin2 2! j sin 4!
2

0 - j sin 4!
2 7 + cos2 2!

               (37) 

 After the expansion (14) and rearrangement, a set of 3 
equations with 4 unknowns can be obtained. 

 

            

   

fs + fd ! 2 = S
fs " 2 + fd = D
fs "* + fd ! = C

                         (38) 

where 

        

 

S = T11

D = TP - Pv - Pc - S

C = T12 ! + T13 !

                     

(39) 
and 

    

  

fc = Pc = 2 Im T23

fv = Pv = 15
16 2 T 33 ! - fc         (40) 

 
C. Procedure to Solve 3 Equations with 4 Unknowns 
 
The same set of three equations with 4 unknowns is 

obtained in (27), (30), and (34), respectively. In order to solve 
these equations, the same assumption [3]-[5] is used to 
eliminate one of the unknowns. Since the volume scattering 
coefficient fv and the helix scattering coefficient 

 

fc are obtained, 
the remaining dominant scattering mechanism (surface 
scattering or double bounce scattering) can be checked. The 
dominant scattering can be discriminated by the expansion of 
the 

 

C13  component for randomly distributed dipoles in the 
covariance matrix formulation [4]. 

 

	
 

  

Re fs ! + fd "# + 1
8 fv - 1

4 fc = Re SHHSVV
*

 	
 	
 (41) 
 
This equation can be re-arranged to 
 

          

 

C0 = 2 Re fs ! + fd "#

= 2 Re SHH SVV
* - 14 fv + 12 fc

= T11
' - T22

' - T33
' + Pc

= 2T11 - TP + Pc

                         

 (42) 
  
The sign of C0  determines the dominant scattering 

mechanism, i.e., surface versus double bounce scattering. 
If C0 > 0 , it can be assumed that the surface scattering is 

dominant. Since the double bounce scattering magnitude is 
negligible in this case, it can be assumed α << 1 and fixed 
α = 0. This condition leads to 

 

 

 

fs = S , ! * = C
S
, fd = D –

C 2

S             (43) 

If C0 0 , it can be assumed that the double bounce 
scattering is dominant. Since the surface scattering magnitude 
is negligible in this case, it can be assumed β << 1 and 
putted β

* = 0. This condition leads to 
 

  

 

fd = D , ! = C
D
, fs = S –

C 2

D      (44) 
 

Once these coefficients are determined, the scattering 
powers can be derived from  

 
 

Ps = fs 1 + ! 2                    (45) 
 

Pd = fd 1 + ! 2                       (46) 

	
 	
 	
 	
 	
 
 

Pv = fv                                              (47) 

	
 	
 	
 	
 	
 
 

Pc = fc                                              (48) 
          

	
 	
 	
 	
 	
 
 

The equation (38) is solved with assumptions that the 
double bounce scattering is dominant so that the solution of 
(38) will be similar to the one of (44). 

 
 D. Decomposition Algorithm Implementation 

 
The procedures in Sections II and III are summarized for 

implementation to POLSAR image analysis directly. The 
corresponding flow-chart of the new 4-component scattering 
power decomposition algorithm is shown in Fig. 2. In the first 
stage before the decomposition, the measured coherency 
matrix is rotated about the line of sight [10], and then a unitary 
transformation is applied on the rotated coherency matrix to 
force T23 = 0 for various scattering model expressions. It 
should be noted that arctan2 should be used for obtaining (6) 
and (10) in the computer algorithm. The number of 
independent parameters in the coherency matrix is reduced 
from 8 to 7 by the unitary transformation. The decomposition 
starts by retrieving the helix scattering power at this stage. 
Then the sign of a branch condition C1  is checked for 
assigning the HV component. The condition is specifically 
developed for retrieving the HV component by dihedral 
scattering only in a similar way to (41) with (40), 

 
 

Re fs ! + fd "# - 730 fv - 14 fc = Re SHHSVV
*
	
 	
 	
 	
 	
 

 (49) 
 

        

 

C1 = 2 Re fs ! + fd "#

= 2 Re SHHSVV* + 7
15Pv +

1
2Pc

= T11 $ - T22 $ + 78 T33 $ + 1
16 Pc                 (50) 

 
Once assigned to the double scattering (C1 0 ), the 

dihedral expansion matrix (37) is used for the volume 
scattering. On other hand, if the surface scattering is assigned 
(C1 > 0), one of the expansion matrices (18), (29) or (33) is 
used for the volume scattering based on the magnitude balance 
of SHH

2
 and SVV

2 . After determination of the volume 
scattering power, it is possible to determine the dominant 
scattering mechanism (surface versus double bounce) within 
the volume scattering by dipole scattering. Then four 
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scattering powers are obtained using C0  of (42). This new 
decomposition accounts for inclusion of the all elements of the 
coherency matrix. 

IV. DECOMPOSITION  RESULTS 
 

In order to compare the results by this advanced method, 
two existing methods [7], [8] are examined for scattering 

C0 > 0

      
    

Four-component 
decomposition

- 2 dB 2 dB

yes no

 

 

   if Pv < 0 , then Pc = 0 (remove helix scattering)

 

Helix  scattering power

Volume 
scattering
 power

Ps = Pd = 0 Pv + Pc > TP

yes no

Unitary transformation  of data matrix
 

T =
T11 T12 T13
T21 T22 T23
T31 T32 T33

= 1
n k p k p

†!
n

T " = R " T R " †

   

C = T12 " + T13 "
  

C = T12 " + T13 " - 1
6 Pv

 

C = T12 " + T13 " + 1
6 Pv

   

C = T12 " + T13 "

Decomposed power

Four comp. Three comp.Two comp. Three comp.

if
  

Ps > 0 , Pd > 0
  

Ps > 0 , Pd < 0
  

Ps < 0 , Pd > 0

  

Ps , Pd , Pv , Pc
  

TP = Ps + Pd + Pv + Pc

  

Pv , Pc

  

Pd = 0
  

Ps = TP – Pv – Pc

  

Pv , Pc

  

Ps = 0
  

Pd = TP – Pv – Pc

  

Pc

  

Ps = Pd = 0
  

Pv = TP – Pc

 

For Ps and Pd ,

yes noSurface scattering
 

C1 > 0
Double bounce scattering

Double bounce 
        dominant

Surface scattering 
dominant

R ! =
1 0 0
0 cos 2! sin 2!
0 - sin 2! cos 2!

2! = 1
2 tan- 1 2 Re T23

T22 - T33

   

10 log
T11 " + T22 " – 2 Re T12 "

T11 " + T22 " + 2 Re T12 "

C1 = T11 " - T22 " + 7
8 T33 " + 1

16 Pc

         

       

S = T11

D = TP - Pv - Pc - SD = TP - Pv - Pc - SD = TP - Pv - Pc - SD = TP - Pv - Pc - S

S = T11 - 1
2 Pv S = T11 - 1

2 Pv S = T11 - 1
2 Pv

C0 = 2T11 + Pc - TP

TP = T11 + T22 + T33

Pv = 15
8 2T33 " - PcPv = 15

8 2T33 " - Pc Pv = 15
16 2T33 " - PcPv = 2 2T33 " - Pc

Pc = 2 Im T23

Ps = S + C 2

S

Ps = S - C 2

DPd = D - C 2

S

Pd = D + C 2

D

 
Fig. 2. Flow-chart of new four-component scattering power decomposition. All calculations can be executed from the elements of coherency matrix. 
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power decomposition, namely, 
Y4R: 4-component decomposition with rotation of 

coherency matrix [7] which makes Re{T23}=0. This method 
minimizes the cross-pol (T33) scattering power generated by 
dipole scattering. 

S4R: 4-component decomposition with rotation of 
coherency matrix [8] which makes Re{T23}=0. This method 
minimizes the cross-pol (T33) scattering power generated by 
dipole scattering plus dihedral scattering. One modification is 
made before applying to POLSAR data as compared to [8]. 
This modification is made in branch condition C1 for selecting 
the dihedral volume scattering model. The modified C1 is the 
same as proposed one in previous section III, while C1 in [8] is 
T11 (θ) – T22 (θ) – (1/2) Pc. The modified C1 is employed only 
for the purpose of retrieving dihedral scattering and of 
preserving volume scattering power in vegetation areas.  

G4U: General 4-component decomposition (the present 
method) which makes T23=0 by unitary transformation of 
[T(θ)]. This method also minimizes the cross-pol (T33) 
scattering power generated by dipole plus dihedral scattering. 

 
These decomposition schemes are applied to many 

ALOS-PALSAR quad-pol. single look complex level 1.1 
images for verifying the correct implementation of this 
scheme. For example, color-coded images over heterogeneous 
areas in San Francisco images are displayed in Fig. 3 using 
ALOS-PALSAR quad- pol data sets (Scene ID: 
ALPSRP276160750, acquired on April 1, 2011). The 
resolution is 30 m in the range and 5 m in the azimuth 
directions, respectively. The window size for the ensemble 
average in image processing was chosen as 2 in the range 
direction and 12 in the azimuth direction, which corresponds 
to 60 m by 60 m on the ground area. Results of the method 
derived in [7] and [8] are compared with the proposed method. 
It is seen that the double bounce scattering power Pd (Red) is 
either enhanced or kept similar in Fig. 3(a) as compared with 
Figs. 3(b) and 3(c) over the urban areas and man-made 
structures. It is also noticed that the surface scattering Ps (blue) 
is either enhanced or kept similar by the G4U as compared to 
the S4R and the Y4R over the vegetation area and sloped 
surface areas. 

The close-up view of white rectangular areas on Fig. 3 is 
shown in Fig. 4. The interesting observation relates to the 40 
degree oriented urban area in patch A on Fig. 4. The red color 
of the oriented urban area is enhanced in Fig. 4(a) as 
compared to 4(b) and 4(c). This enhancement of Red serves to 
recognize man-made structures from vegetation areas more 
easily. This is because the unitary transformation based 
method is accounting for all elements of the coherency matrix. 

The decomposition power contribution of highly oriented 
dense urban areas in the San Francisco image are also shown 
in Table I, for patch A (black line box in Fig. 4) in San 
Francisco images in Fig. 4, for quantitative comparison of the 
existing 4-component schemes versus the proposed 
4-component scheme. It can be seen that the volume scattering 
components of the methods G4U and S4R are decreased and 
the surface scattering components of the methods G4U and 
S4R are increased as compared to the method Y4R [7]. The 
double bounce scattering components of present methods are 

increased as compared to the methods Y4R [7] and S4R. The 
helix power remains invariant, which implies that the 
proposed method works well in highly oriented urban areas as 
compared to the existing improved extension of the three 
component method in Y4R [7] and S4R. In addition, the total 
power differences between the measured data and the 
decomposition results over the oriented urban areas for patch 
A are listed in Table I. Although they are very small (less than 
0.2%), the relative error order is G4U < Y4R < S4R. 

 

 
                                                           (a) 
 

 
                                                         (b)  
 

 
                                                           (c)  
 
Fig. 3. Color-coded scattering power decomposition with Red (double 
bounce), Green (volume scattering), Blue (surface scattering). (a) G4U: New 
four-component decomposition with unitary transform coherency matrix and 
T23 = 0. The HV component is assigned to dihedral and dipole scattering. (b) 
S4R: four-component decomposition with Re{T23} = 0 rotation. The HV 
component is assigned to dihedral and dipole scattering. (c) Y4R: 
Four-component decomposition with Re(T23) = 0 rotation. The HV component 
is assigned only to dipole scattering. 
 
   The decomposition power contribution of vegetation areas in 
the San Francisco image are also shown in Table II, for yellow 
line box in Fig. 3, for quantitative comparison of the existing 
4-component schemes versus the proposed 4-component 
scheme. It has been observed that the volume scattering 
components of the proposed methods are preserved and the 
surface scattering components of the present methods are 
increased as compared to the method Y4R [7] and S4R. The 
double bounce scattering components of present methods are 
decreased as compared to the methods Y4R [7] and S4R. 
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    (a)  
 

 
    (b)  
 

 
(c)  

 
Fig. 4. Close-up view of white rectangular images in Fig.3. (a) G4U: New 
four-component decomposition with unitary transformed coherency matrix. 
(b) S4R: four-component decomposition with Re{T23} = 0 rotation. The HV 
component is assigned to dihedral and dipole scattering. (c) Y4R: 
Four-component decomposition with Re(T23) = 0 rotation. 
 
 
 
 
 
 
 
 

TABLE I 
DECOMPOSITION MEAN POWER STATISTICS OVER THE ORIENTED URBAN AREA 
FOR PATCH A (BLACK LINE BOX IN FIG. 4) IN SAN FRANCISCO IMAGES IN FIG. 4 

 

 
TABLE II 

DECOMPOSITION MEAN POWER STATISTICS OVER THE VEGETATION AREA FOR 
YELLOW LINE BOX IN FIG.3 

 
Methods Ps Pd Pv Pc TP 

from 
results 

TP 
from 
data 

S4R  0.089 0.045 0.26 0.029 0.423 0.423 

G4U  0.091 0.043 0.26 0.029 0.423 0.423 

Y4R 0.089 0.045 0.26 0.029 0.423 0.423 

 
    In order to further examine the volume scattering result of 
the newly proposed method, the decomposition power profiles 
along a transect B in Fig. 4 (or white line in Fig. 5) over the 
forest, the POLO ground and the orthogonally oriented urban 
areas, respectively, are shown in Fig. 5. It has been found that 
the proposed method preserves the amount of the volume 
scattering in vegetation and POLO ground areas similar to the 
Y4R [7] and the S4R. Furthermore, statistics of whole image 
pixels processed by using the four volume scattering models 
are given in Table III. 
 

 
 
Fig. 5. Decomposition scattering power Pv profile along white line (same as 
white line B in Fig.4) for various targets 
 

 
 
 
 
 
 
 
 
 

Methods Ps Pd Pv Pc TP 
from 

results 

TP 
from 
data 

S4R   0.415 0.444 0.432 0.117 1.408 1.405 

G4U 0.406 0.450 0.432 0.117 1.405 1.405 

Y4R 0.385 0.435 0.467 0.117 1.404 1.405 
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TABLE III 

PROCESSED PIXEL STATISTICS OF PV BY USING THE FOUR VOLUME SCATTERING 
MODELS AND BY THE POWER CONSTRAIN 

 
 

Proposed G4U method is also applied on fine beam mode 
(FQ9) quad polarization Radarsat-2 image (acquired on April 
9, 2008) over the San Francisco with multi-look factors 6 in 
the range direction and 12 in the azimuth direction. A 
color-coded image of proposed G4U method results with 
Radarsat-2 data sets is shown in Fig. 6. A comparison of 
decomposition results with C- band and L-band POLSAR data 
has been investigated for vegetation (volume scattering 
dominant features), urban (double-bounce scattering dominant 
areas) and airport runway (surface scattering dominant) areas. 
The statistics of the scattering power contribution shifting 
from volume scattering (golden color box in Fig.6) at C-band 
to the surface and double bounce scattering in L-band in 
vegetation areas are shown in Table IV. Moreover, similar 
statistics for the change of single bounce (airport runway areas, 
white box in Fig.6) and double bounce (orthogonal urban 
areas, black box in Fig.6) at C-band to other scattering classes 
at L-band are shown in Table IV. 
 

 
 
Fig. 6. A color-coded image of proposed G4U method results with Radarsat-2 
data sets. RADARSAT-2 Data and Products © MacDonald, Dettwiler and 
Assocates Ltd., 2008 - All Rights Reserved. 

 
Due to longer wavelength of L-band as compared to C-band 

and nearly 5.50 lower incident angle of the acquired PLASAR 
scene (23.50) than the angle of incidence of the acquired 
Radarsat-2 scene (290), L-band PLASAR scene reflects the 
surface and double bounce scattering more than C-band 
Radarsat-2 scene in vegetation areas. Moreover, it can be seen 
that the double bounce contribution is reduced by 14.9% at 
L-band PALSAR data as compared to C-band Radarsat-2 data. 
The surface scattering dominant areas show slightly higher 
contribution at L-band than C-band POLSAR data. 

 

 
TABLE IV 

SURFACE (PS), DOUBLE BOUNCE (PD) AND VOLUME (PV) SCATTERING POWER 
COMPONENT CONTRIBUTION STATISTICS OF PROPOSED G4U METHOD FOR THE 
C-BAND AND L-BAND OVER THE VEGETATION AREAS (GOLDEN COLOR BOX IN 
FIG.6), URBAN AREAS (BLACK BOX IN FIG.6) AND AIRPORT RUNWAY AREAS 

(WHITE BOX IN FIG.6) 

V. CONCLUSION 
A new four-component scattering power decomposition 

scheme is presented in this paper. The element T23 of the 
measured rotated coherency matrix is completely eliminated 
by implementing of double unitary transformations. This 
four-component decomposition accounts for 7 parameters out 
of 7 independent polarimetric parameters included in the 
coherency matrix. Therefore, this method uses full 
polarimetric information in the decomposition. The double 
bounce component is enhanced over the urban areas. It was 
shown that this method yields accurate and/or similar 
decomposition images compared with those by the existing 
four-component decomposition [7], [8] resulting from the full 
utilization of polarimetric information. 
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