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Summary

A wavelet BEM is applied to the evaluation of the effective elastic moduli of unidirectional

composites, based on the homogenization theory. This attempt is devoted to the reduction

of computational cost for the BE-based homogenization analysis. Truncation for matrix

compression is carried out by the Beylkin-type algorithm. A thresholding value for the

truncation is set such that the discretization error of BE solution is comparable to its

truncation error. Besides, rearrangement of the BE equations is proposed to attain rapid

convergence of iterative solutions. Through investigation of asymptotical convergence of

the effective moduli, it is found that the BE-based homogenization analysis ensures the

same rate of convergence for effective moduli as for characteristic functions. By applying

the wavelet BEM to heterogeneous media which have microstructures with many voids,

the effective moduli with agreement of 2 — 4 digits can be evaluated using 20 — 50 %

memory requirements of conventional BE approaches.
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1 Introduction

The homogenization method is one of the mechanical and mathematical tools for evalu-

ating macroscopic effective property of microscopic heterogeneous media. In formulation

of the homogenization method, it is supposed that a microstructure defining a state of

heterogeneity possesses spatial periodicity in a body. Then, the phase of the microstruc-

ture is represented by so-called a unit cell or a representative volume element (RVE). In

this stage, we consider an infinitesimal size of the unit cell, and hence we can model the

microscopic heterogeneous problems as a coupling of two boundary value problems con-

cerning microscopic- and macroscopic fields. As a result, the macroscopic responses in

the homogenized field can be described based on the constitutive law defined by the en-

semble averages of microscopic variables. On the other hand, a state of microscopic field,

e.g. stress distribution in a unit cell embedded in the homogenized field, can be easily

simulated based on macroscopic responses.

The homogenization approach has several outstanding advantages. One is that the con-

sistency in mathematical and physical aspects inheres in the multi-scale modeling, which

is not seen in the classical micromechanics (e.g. [1]) and the conventional numerical RVE

analysis (e.g. [2]). In the formulation, two variables are introduced to describe the states

of the fields. These are independent of each other in the macroscopic- and microscopic

fields; nevertheless, both variables strictly satisfy the governing equation in each field.

Another advantage is the availability of widely-used numerical tools in both macroscopic-

and microscopic analyses. Besides, there are no restrictions on the phases of microstruc-

tures. We can therefore, analyze the effective properties and the macroscopic responses of

a wide class of heterogeneous media. The engineering use of the homogenization method

has been introduced in vast papers (e.g. [3][4][5]); most of these numerical results have

been obtained by finite element (FE) analysis. This is due to wide applicability of the

FEM.

The homogenization analysis however, has the mesh sensitivity on evaluation of the ef-

fective moduli. This has been pointed out by Guedes & Kikuchi [3]. To overcome this

difficulty, they [3] have attempted to apply a mesh adaptation algorithm to the homoge-

nization analysis. Their attempt attains remarkable improvement in the asymptotical rate

of effective moduli. If we do not use such algorithms to retain the accuracy of the effective

moduli, we will certainly need a large number of finite elements. In implementation of

FE-based analysis, the increase in the number of finite elements will incur the difficulty of

mesh generation.

These computational problems in the FE-based homogenization analysis can be settled

by application of the BEM, because the procedure for evaluating effective moduli based

on the FEM can be quite replaced to the BE-based procedure. In the BE-based homog-

enization analysis, the effective moduli can be evaluated by calculation of the boundary

integrals concerning characteristic functions [6]. Hence, it is expected that the asymptot-

ical convergence rates of the effective moduli are the same as those of the characteristic

functions. Besides, only meshing on boundary is required in implementation of BE-based
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analysis, which also alleviates the difficulty of mesh generation. Therefore, several re-

searchers have attempted to apply the BEM to homogenization analysis, e.g. Kamiński

[7], Okada et al. [6] and Procházka [8][9].

Although the BE-based homogenization analysis leads to the reduction of the task for

pre-processing, a computational problem peculiar to BE analysis – large computational

cost in large-scale problems – still remains in its implementation. This difficulty in

particular will be serious for such microscopic problems as the microstructure with many

particles, many fissures or cracks, and with stress concentration, for which we have to

treat the boundary element equations with large degree of freedom in order to evaluate the

effective moduli with sufficient accuracy. In such a situation, application of a wavelet BEM

may be effective for the reduction of computational cost for the BE-based homogenization

analysis.

The wavelet BEM has a simple algorithm in which wavelet bases are employed as basis

functions for the discretization of boundary integral equation (BIE) [10]. In this method,

the far-field influences in the BIE decay more rapidly due to vanishing moments of wavelets

than that in the conventional BE analysis [11]. By applying the wavelet algorithm to the

BEM, we consequently obtain a coefficient matrix of which most of entries have small

values owing to the rapid decay. This matrix however, remains a fully populated one in

this stage. It turns to a sparse coefficient matrix by truncation of these small matrix

entries. A sparse matrix enables us to reduce not only the memory requirements, but

also the CPU time for BE analysis with application of iterative solvers. In BE analysis,

the wavelet method may enhance the computational performance up to O(N(logN)α)

(α ≥ 0) or O(N1+γ) (0 ≤ γ < 1) storage memory and complexity. Its availability to

saving of computational cost has been verified through numerical results in many papers,

e.g. [12][13][14][15][16][17][18].

In this paper, the fundamental aspects in the implementation of the wavelet BEM for

homogenization analysis and its availability are discussed. The outline of this paper is as

follows. In Section 2, we describe the boundary integral formulation for evaluating the

effective elastic moduli of unidirectional composites. As will be mentioned in the present

paper, this formulation is based on the mathematical homogenization theory introduced

in Ref. [3]. In Section 3, we introduce several numerical procedures required to implement

the wavelet BEM in the homogenization analysis. The discussion presented in this section

is comprised of the following aspects; discretization, treatment of periodic boundary condi-

tions, equation rearrangement that yields rapid convergence of the iterative solution, and

matrix compression strategy. In Section 4, we first describe an algorithm of the wavelet

BEM used in the homogenization analysis for unidirectional composites. The remainder

of this section is devoted to presentation of basic performance of homogenization analysis

based on the wavelet BEM. We investigate, in particular, the availability of the several

manipulations introduced in implementation of wavelet BEM and the behavior of errors of

the effective elastic moduli evaluated using the wavelet BEM. Finally, concluding remarks

are summarized in Section 5.
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Figure 1: A state of equilibrium of a heterogeneous elastic body.

Figure 2: Microstructure of unidirectional

composites.
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Figure 3: Phase of constituents in y1 − y2
plane.

2 Boundary integral formulation for evaluating effective elastic moduli of

unidirectional composites

Let us consider the effective elastic modulus of a heterogeneous medium illustrated in

Figure 1. We suppose that the medium is the two-phase material comprised of inclusion-

and matrix phases. All the inclusions have a cylindrical shape, and are oriented toward

a certain direction. Moreover, the representative length ε, by which the phases of the

inclusions are specified, is very small in comparison with the scale of the overall elastic

body shown in Figure 1.

To evaluate the effective elastic modulus of such a heterogeneous body, we now introduce

the homogenization theory. In the mathematical homogenization, we suppose the spatial

periodic arrangement of the cylindrical inclusions. Hence, the phase of the unidirectional

composite can be specified by a unit cell illustrated in Figure 2. In the unit cell Y , the

inclusion Y1 and the matrix Y2 are assumed to be perfectly bonded at the interface S.

As will be described in the below, the heterogeneous medium is regarded as a homoge-

neous elastic body under macroscopic coordinates x, by using the homogenization theory.

This macroscopic homogenized medium is subjected to the prescribed traction t on the
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subboundary ∂Ωt (see Figure 1). Note that we now neglect the body forces subjecting in

the domain Ω for brevity. In this situation, a state of equilibrium of the medium can be

described by a weak-form as follows:Z
Ωε
Eε
ijkl

∂uεk
∂xl

∂vi
∂xj

dΩ =

Z
∂Ωt

tivi d(∂Ω),

(uε ∈ V ε, v ∈ V ε), V ε :=
©
v ∈ (H1(Ωε))3| v = 0 (on ∂Ωd)

ª
,

(1)

where uε is the displacement in the domain Ωε of the heterogeneous medium with the

periodic microstructure. The boundary ∂Ω consists of ∂Ω = ∂Ωd + ∂Ωt. ∂Ωd denotes the

subboundary on which uε is prescribed. Moreover, the constitutive law of the heteroge-

neous medium is defined by

σεij = E
ε
ijkle

ε
kl, eεkl =

1

2

µ
∂uεk
∂xl

+
∂uεl
∂xk

¶
, (2)

Eε
ijkl = ΘαE

(α)
ijkl, (α = 1, 2), Θα =

(
1, y ∈ Yα,
0, elsewhere,

(3)

Eε
ijkl = E

ε
jikl = E

ε
ijlk = E

ε
klij , C > 0 : Eε

ijkle
ε
ije

ε
kl ≥ Ceεijeεij , eεij = e

ε
ji, (4)

where y = x/ε is the coordinates for describing a state of the heterogeneous microscopic

field. σεij and e
ε
ij are the stress- and the strain tensors in Ω

ε, respectively. Eε
ijkl is the

elastic modulus of the medium, and E
(α)
ijkl represents the elastic modulus of the constituent

Yα.

In equation (1), the displacement uε varies within a small unit cell, and hence this

variable depends not only on the macroscopic coordinates x but also on the microscopic

coordinates y. Furthermore, we assume that uε can be expressed by the following asymp-

totical expansion with respect to ε:

uε = u(x,y) = u0(x,y) + εu1(x,y) + ε2(· · · · · · ), y =
x

ε
, (5)

where uj(x,y) (j = 0, 1, . . .) is defined in (x,y) ∈ Ω× Y , and is periodic on y due to the
periodicity of microstructure.

Substituting equation (5) into equation (1) and taking the limit ε −→ 0+, we obtain the

equilibrium equation of the macroscopic homogenized elastic body as follows [3]:Z
Ω
Dijkl

∂u0k
∂xl

(x)
∂vi
∂xj

(x) dΩ =

Z
∂Ωt

tivi(x) d(∂Ω),

v ∈ VΩ, VΩ := {v(x) defined in Ω |v = 0 (on ∂Ωd); v smooth enough},
(6)

Dijkl(x) :=
1

|Y |

Z
Y
Θα

Ã
E
(α)
ijkl −E

(α)
ijpm

∂χklp
∂ym

!
dY,

Dijkl = Djikl = Dijlk = Dklij , C > 0 : Dijkleijekl ≥ Ceijeij , eij = eji,

(7)

where the microscopic displacement u0 is independent of the variable y, and Dijkl is

the effective elastic modulus of the homogenized medium. Furthermore, the function χkl,
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which is essential to evaluate the effective modulus Dijkl, is referred to as the characteristic

function. This function is defined as a solution of the following microscopic boundary value

problem:Z
Y
ΘαE

(α)
ijpm

∂χklp
∂ym

∂vi
∂yj

dY =

Z
Y
ΘαE

(α)
ijkl

∂vi
∂yj

dY, v ∈ VY , χkl ∈ VY ,

VY := {v(y) defined in Y |v(y) Y − periodic; v smooth enough}.
(8)

where “Y-periodic” implies the spatial periodicity of the microstructure. Notice that

equation (8) implies that the characteristic function χkl satisfies the equilibrium equation

of elastic media [3][7]. Because of χkl = χlk, we need to solve equation (8) 3 times for

2-D or 6 times for 3-D, in the analysis. If the phase of the microstructure is specified by a

unit cell, the procedure for evaluating the effective modulus Dijkl is carried out only once

before the solving of equation (6).

For the unidirectinal composite, the geometrical- and the material properties are invari-

ant to translation along the axial direction y3, as shown in Figure 2. We can thus specify

the internal phase geometry by the geometrical information on the cross-section Ȳ (see

Figure 2); besides, the current problem is regarded as a generalized plane-strain problem.

In this situation, we can consider the in-plane components χklβ (β = 1, 2) and the out-plane

component χkl3 , separetely. The governing equations concerning χ
kl are described by the

following boundary integral equations [6][7]:

cβγχ
kl
γ +

Z
S̄
p
(1)∗
βγ χklγ d(∂Ȳ1) =

Z
S̄
u
(1)∗
βγ p̄

(1)kl
γ d(∂Ȳ1), (for Ȳ1),

cβγχ
kl
γ +

Z
S̄+Γ̄

p
(2)∗
βγ χklγ d(∂Ȳ2) =

Z
S̄+Γ̄

u
(2)∗
βγ p̄

(2)kl
γ d(∂Ȳ2), (for Ȳ2),

(9)

for the in-plane components (β = 1, 2), and

cχkl3 +

Z
S̄
p
(1)∗
33 χkl3 d(∂Ȳ1) =

Z
S̄
u
(1)∗
33 p̄

(1)kl
3 d(∂Ȳ1), (for Ȳ1),

cχkl3 +

Z
S̄+Γ̄

p
(2)∗
33 χkl3 d(∂Ȳ2) =

Z
S̄+Γ̄

u
(2)∗
33 p̄

(2)kl
3 d(∂Ȳ2), (for Ȳ2),

(10)

for the out-plane component χkl3 . In equations (9) and (10), S̄ is the interface of Ȳ1 and

Ȳ2 in the cross-section Ȳ , and Γ̄ is the outer boundary of Ȳ . p̄
(α)∗
j := E

(α)
ijpmχ

kl
p,mn

(α)
i .

Moreover, u
(α)∗
βγ and p

(α)∗
βγ are the fundamental solutions of 2-D elastostatic ploblems,

whereas u
(α)∗
33 and p

(α)∗
33 are given by

u
(α)∗
33 := − 1

2πG(α)
ln r, p

(α)∗
33 := − 1

2πr

∂r

∂n(α)
, (11)

where r is the distance between the two points in the domain Ȳα, and G
(α) is the shear

modulus of the constituent Ȳα. n
(α) denotes the outward normal direction on the boundary

∂Ȳα.
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On the other hand, the boundary conditions for calculating χkl are described as follows:

p̄
(1)kl
i + p̄

(2)kl
i = E

(1)
ijkln

(1)
j + E

(2)
ijkln

(2)
j , (on S̄),

χkl(left) = χ
kl
(right), χkl(top) = χ

kl
(bottom), (on Γ̄),

p̄
(2)kl
(left) + p̄

(2)kl
(right) = 0, p̄

(2)kl
(top) + p̄

(2)kl
(bottom) = 0, (on Γ̄),

(12)

where the subscripts “(left)”, “(right)”, “(top)” and “(bottom)” denote pieces of the

boundary Γ̄ of the cross-section Ȳ . For isotropic constituents, the force E
(α)
ijkln

(α)
j subjecting

on S̄ has alternatively the in-plane and out-plane components, which results from material

isotropy and n
(α)
3 = 0. Hence, the out-plane components of χ11, χ22, χ33 and χ12, and the

in-plane components of χ23 and χ31 vanish. In other words, we can simulate the responses

of χ11, χ22, χ33 and χ12 through the in-plane analysis using equation (9), whereas χ23

and χ31 can be calculated by the out-plane analysis based on equation (10).

Like the simulation of the characteristic function χkl, we can evaluate the effective elastic

modulus Dijkl of the unidirectional composites only using the geometrical and material

properties of the phase Ȳα [6], i.e.,

Dijkl =
E
(1)
ijkl|Ȳ1|+ E

(2)
ijkl|Ȳ2|

|Ȳ | − 1

|Ȳ |

2X
α=1

Z
S̄
E
(α)
ijpmχ

kl
p n

(α)
m d(∂Ȳα),

|Ȳα| =
Z
Ȳα

dȲ =
1

2

Z
S̄
ymn

(α)
m d(∂Ȳα).

(13)

3 Homogenization analysis using wavelet BEM

3.1. Assembly of boundary element equation

To evaluate the effective elastic moduli of unidirectional composites, we now utilize the

wavelet BEM to numerically solve boundary integral equations (9) and (10) concerning

the characteristic function χkl.

In the first stage of wavelet-based BE analysis, we need to discretize boundary integral

equations (9) and (10). To achieve this, we introduce the approximate solutions χ̃klj and

˜̄p
(α)kl
j defined as the wavelet series [17], i.e.,

χklj ' χ̃klj :=

nsX
p=1

X̂kl
j,pφ0,p +

MX
m=0

nmX
q=1

X̃kl
j,mqψm,q,

p̄
(α)kl
j ' ˜̄p

(α)kl
j :=

nsX
p=1

T̂
(α)kl
j,p φ0,p +

MX
m=0

nmX
q=1

T̃
(α)kl
j,mq ψm,q,

(14)

where φ0,p and ψm,q are the scaling function and the wavelet, respectively. In this study,

we adopt the piecewise constant function and the Haar wavelet as φ0,p and ψm,q. Thus,
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φ0,p and ψm,q are defined by

φ0,p := φ(ξ − p), ψm,q = 2
m

2 ψ(2mξ − q), (15)

φ(ξ) :=

(
1, 0 ≤ ξ ≤ 1,
0, elsewhere,

ψ(ξ) :=

⎧⎪⎨⎪⎩
1, 0 ≤ ξ ≤ 1/2,
−1, 1/2 < ξ ≤ 1,
0, elsewhere.

(16)

Note that the wavelet ψ satisfies the first-order vanishing moment property asZ ∞
−∞

ψ(ξ)dξ = 0. (17)

In equation (14), X̂kl
j,p, X̃

kl
j,mq, T̂

(α)kl
j,p and T̃

(α)kl
j,mq are the expansion coefficients of χklj and

p̄
(α)kl
j . Moreover, M is the finest resolution level, and ns and nm are the numbers of the

basis functions φ0,p and ψm,q, respectively.

Substituting equation (14) into equations (9) and (10) and applying the Galerkin method

to the resulting equation, we obtain the boundary element equations corresponding to the

subdomains Ȳ1 and Ȳ2 as follows:

H(1)X
(1)kl

S̄
= G(1)T

(1)kl

S̄
, (18)

⎡⎢⎢⎣
H
(2)

S̄,S̄
H
(2)

S̄,Γ̄0
H
(2)

S̄,Γ̄0(opp)

H
(2)

Γ̄0,S̄
H
(2)

Γ̄0,Γ̄0
H
(2)

Γ̄0,Γ̄0(opp)

H
(2)

Γ̄0(opp),S̄
H
(2)

Γ̄0(opp),Γ̄0
H
(2)

Γ̄0(opp),Γ̄0(opp)

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

X
(2)kl

S̄
Xkl
Γ̄0

Xkl
Γ̄0(opp)

⎫⎪⎬⎪⎭

=

⎡⎢⎢⎣
G
(2)

S̄,S̄
G
(2)

S̄,Γ̄0
G
(2)

S̄,Γ̄0(opp)

G
(2)

Γ̄0,S̄
G
(2)

Γ̄0,Γ̄0
G
(2)

Γ̄0,Γ̄0(opp)

G
(2)

Γ̄0(opp),S̄
G
(2)

Γ̄0(opp),Γ̄0
G
(2)

Γ̄0(opp),Γ̄0(opp)

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

T
(2)kl

S̄

T
(2)kl

Γ̄0

T
(2)kl

Γ̄0(opp)

⎫⎪⎬⎪⎭ .
(19)

where Xkl and T(α)kl are the vectors of which components are the expasion coefficients in

equation (14). The subscripts S̄ and Γ̄ stand for subboundaries on which the wavelet series

χ̃klj and ˜̄p
(α)kl
j are defined. Moreover, Γ̄ = Γ̄0∪ Γ̄0(opp) where Γ̄0(opp) is the opposite side patch

of the subboundaries Γ̄0. In assembly of the boundary element equation, we will impose the

displacement continuity and traction equilibrium conditions induced by spatial periodicity

of the microstructures on the expansion coefficients Xkl
Γ̄0
, Xkl

Γ̄0(opp)
, T

(α)kl

Γ̄0
and T

(α)kl

Γ̄0(opp)
on

the subboundaries Γ̄0 and Γ̄0(opp), as has been shown in equation (12). Furthermore, the

coefficient matrices G(α) and H(α) have the following elements g
(α)
(p,q)(i,j) and h

(α)
(p,q)(i,j):

g
(α)
(p,q)(i,j) :=

Z
∂Yα

wp

Z
∂Yα

u
(α)∗
ij wq d(∂Yα)

2,

h
(α)
(p,q)(i,j) :=

1

2
δij

Z
∂Yα

wpwq d(∂Yα) +

Z
∂Yα

wp

Z
∂Yα

p
(α)∗
ij wq d(∂Yα)

2,

{wp |p = 1, . . . , N} := {φ0,β , φm,γ | β = 1, . . . , ns,

m = 0, . . . ,M, γ = 1, . . . , nm(m)},

(20)
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where u
(α)∗
β3 = u

(α)∗
3β = 0 and p

(α)∗
β3 = p

(α)∗
3β = 0 for β = 1, 2.

Secondary, let us consider the continuity of the characteristic function χkl and the

equilibrium of the traction p̄(α)kl. In this case, the displacement continuity and traction

equilibrium conditions are derived from equation (12) as follows:

X
(1)kl

S̄
= ρS̄X

(2)kl

S̄
, T

(1)kl

S̄
+ ρS̄T

(2)kl

S̄
= F,

XklΓ̄0(opp) = ρΓ̄0X
kl
Γ̄0 , T

(2)kl

Γ̄0(opp)
+ ρΓ̄0T

(2)kl

Γ̄0
= 0,

ρS̄ = {ρβδβζ | β = 1, . . . , 3Ns} ∈ R3Ns×3Ns ,

ρΓ̄0 = {ργδγζ | γ = 1, . . . ,
3

2
(N −Ns)} ∈ R

3

2
(N−Ns)× 3

2
(N−Ns),

(21)

where Ns is the number of basis functions used for the interpolation on the interface

S̄. The known vector F has the components given by the expansion coefficients of the

force E
(1)
ijkln

(1)
j + E

(2)
ijkln

(2)
j subjecting on S̄. Moreover, ρβ is set either to 1 (wβ: scaling

function) or −1 (wβ: wavelet), which is available only for the Haar wavelets. If other
wavelets are employed as the basis functions in the analysis, we will have to determine ρβ

in consideration of the symmetry and asymmetry of the basis functions.

Now, imposing restriction (21) on boundary element equations (18) and (19), we obtain

a system of algebraic equations with unknowns X
(2)kl

S̄
, Xkl

Γ̄0
, T

(2)kl

S̄
and T

(2)kl

Γ̄0
as follows:⎡⎢⎢⎢⎢⎣

ρS̄H
(1) ρS̄G

(1) 0

H
(2)

S̄,S̄
−G(2)

S̄,S̄
H
(2)

S̄,Γ̄0
+ ρΓ̄0H

(2)

S̄,Γ̄0(opp)

H
(2)

Γ̄0,S̄
−G(2)

Γ̄0,S̄
H
(2)

Γ̄0,Γ̄0
+ ρΓ̄0H

(2)

Γ̄0,Γ̄0(opp)

H
(2)

Γ̄0(opp),S̄
−G(2)

Γ̄0(opp),S̄
H
(2)

Γ̄0(opp),Γ̄0
+ ρΓ̄0H

(2)

Γ̄0(opp),Γ̄0(opp)

0

−(G(2)

S̄,Γ̄0
− ρΓ̄0G(2)

S̄,Γ̄0(opp)
)

−(G(2)

Γ̄0,Γ̄0
− ρΓ̄0G(2)

Γ̄0,Γ̄0(opp)
)

−(G(2)

Γ̄0(opp),Γ̄0
− ρΓ̄0G(2)

Γ̄0(opp),Γ̄0(opp)
)

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩
X
(2)kl

S̄

T
(2)kl

S̄
Xkl
Γ̄0

T
(2)kl

Γ̄0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
G(1)F
0
0
0

⎫⎪⎪⎬⎪⎪⎭ .
(22)

In equation (22), the coefficient matrix is singular, since the translation of the unit cell

is not quite restricted by boundary conditions (12). We can however, calculate one of

the non-unique solutions including the translation modes, using an iterative solver that

has a residual-based termination algorithm for the iterative process. Then, we have no

need to regularize simultaneous equation (22). This results from as follows: the initial

guess used in the iterative process prescribes the rigid body motion of the cell and the

translation modes in the iterative solution do not affect the residual norm used for the

decision of iteration termination. In the present approach for homogenization analysis, we

can straightforwardly use the BE solution χ̃kl including the translation modes to evaluate

the effective elastic moduli of unidirectional composites. The translation components in

χ̃kl obviously depends on the setting of the initial guess; however, the effective elastic

modulus evaluated by equation (13) is independent of the quantity of translation of the

unit cell. We can easily prove the translation independency of Dijkl using definition (7)

of Dijkl and the divergence theorem.
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3.2. Rearrangement of boundary element equation for rapid convergence of iterative so-

lution

As mentioned above, an iterative solver is used to calculate the BE solution χ̃kl of the

characteristic function with equation (22). This is because in wavelet-based BE analysis

the system matrix of boundary element equations becomes sparse and no regularization

of the equation is required. To save the computation time for solving the equation, it is

essential to attain convergence in the iterative solutions with less number of iterations. In

general, the computational work required up to termination of the iteration depends not

only on the number of non-zero entries, but also on the population of coefficient matrix

entries. For the homogenization analysis with the wavelet BEM, the dominant entries

of the coefficient matrix of equation (22) are not concentrated in the vicinity of matrix

diagonal. This may incur the increase in the number of iterations. To avoid increasing the

computational work for the iteration, we now propose a special preconditioning algorithm:

the rearrangement of simultaneous equation (22).

Let us now consider the boundary element equation given by equation (22). This equa-

tion can be described symbolically as⎡⎢⎣ A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎤⎥⎦
⎧⎪⎨⎪⎩
z1
z2
z3
z4

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩
b1
b2
b3
b4

⎫⎪⎬⎪⎭ . (23)

Besides, it is assumed that the rearrangement of equation (23) yields the resulting equation

as ⎡⎢⎣ A
0
11 A0

12 A0
13 A0

14

A0
21 A0

22 A0
23 A0

24

A0
31 A0

32 A0
33 A0

34

A0
41 A0

42 A0
43 A0

44

⎤⎥⎦
⎧⎪⎨⎪⎩
z01
z02
z03
z04

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩
b01
b02
b03
b04

⎫⎪⎬⎪⎭ . (24)

In the present study, we reconstruct equation (23) based on the following rule, in order to

guarantee the nearly diagonal dominance of the coefficient matrix:

A0
2i−1,j ←− A2i−1,j + ρiA2i,j ,

A0
2i,j ←− A2i−1,j − ρiA2i,j ,

z0j ←− zj ,
b02i−1 ←− b2i−1 + ρib2i,
b02i ←− b2i−1 − ρib2i,

(25)

where i = 1, 2, j = 1, 2, 3, 4 and ρ is a diagonal matrix.

We now apply rearrangement rule (25) to boundary element equation (22) and choose

ρ1 = ρT
S̄
= ρS̄ and ρ2 = ρT

Γ̄0
= ρΓ̄0 . As a result, we obtain the resulting simultaneous

9



equation as follows:⎡⎢⎢⎢⎢⎣
ρS̄(H

(1) +H
(2)

S̄,S̄
) ρS̄(G

(1) −G(2)

S̄,S̄
)

ρS̄(H
(1) −H(2)

S̄,S̄
) ρS̄(G

(1) +G
(2)

S̄,S̄
)

H
(2)

Γ̄0,S̄
+ ρΓ̄0H

(2)

Γ̄0(opp),S̄
−G(2)

Γ̄0,S̄
− ρΓ̄0G(2)

Γ̄0(opp),S̄

H
(2)

Γ̄0,S̄
− ρΓ̄0H(2)

Γ̄0(opp),S̄
−G(2)

Γ̄0,S̄
+ ρΓ̄0G

(2)

Γ̄0(opp),S̄

ρS̄(H
(2)

S̄,Γ̄0
+ ρΓ̄0H

(2)

S̄,Γ̄0(opp)
)

−ρS̄(H(2)

S̄,Γ̄0
+ ρΓ̄0H

(2)

S̄,Γ̄0(opp)
)

H
(2)

Γ̄0,Γ̄0
+ ρΓ̄0H

(2)

Γ̄0,Γ̄0(opp)
+ ρΓ̄0(H

(2)

Γ̄0(opp),Γ̄0
+ ρΓ̄0H

(2)

Γ̄0(opp),Γ̄0(opp)
)

H
(2)

Γ̄0,Γ̄0
+ ρΓ̄0H

(2)

Γ̄0,Γ̄0(opp)
− ρΓ̄0(H(2)

Γ̄0(opp),Γ̄0
+ ρΓ̄0H

(2)

Γ̄0(opp),Γ̄0(opp)
)

−ρS̄(G(2)

S̄,Γ̄0
− ρΓ̄0G(2)

S̄,Γ̄0(opp)
)

ρS̄(G
(2)

S̄,Γ̄0
− ρΓ̄0G(2)

S̄,Γ̄0(opp)
)

−(G(2)

Γ̄0,Γ̄0
− ρΓ̄0G(2)

Γ̄0,Γ̄0(opp)
)− ρΓ̄0(G(2)

Γ̄0(opp),Γ̄0
− ρΓ̄0G(2)

Γ̄0(opp),Γ̄0(opp)
)

−(G(2)

Γ̄0,Γ̄0
− ρΓ̄0G(2)

Γ̄0,Γ̄0(opp)
) + ρΓ̄0(G

(2)

Γ̄0(opp),Γ̄0
− ρΓ̄0G(2)

Γ̄0(opp),Γ̄0(opp)
)

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩
X
(2)kl

S̄

T
(2)kl

S̄
Xkl
Γ̄0

T
(2)kl

Γ̄0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
G(1)F

G(1)F
0
0

⎫⎪⎪⎬⎪⎪⎭ .
(26)

In equation (26), all the diagonal blocks of the coefficient matrix include additions of

the diagonal blocks of original boundary element equations (18) and (19), and thus the

additions may not vanish independently of the components of ρS̄ and ρΓ̄0 . On the other

hand, the off-diagonal blocks are constructed by subtractions of the diagonal blocks in

the original equations and additions of the off-diagonal blocks in equations (18) and (19).

Hence, it is expected that the off-diagonal blocks in equation (26) have smaller entries than

those of the diagonal blocks. The resulting equation (26) has the coefficient matrix with

nearly diagonal dominance, which will ensure the rapid convergence of iterative solutions.

In the below, we use equation (26) to evaluate the characteristic functions χkl. The

proposed approach will be validated in Section 4.

3.3. Matrix compression scheme

In the wavelet-based BE analysis, we can enhance the computational performance by

matrix compression, i.e., generating a sparse matrix of boundary element equations. The

sparse matrix is yielded by the truncation of its small entries. In this study, the truncation

of the matrix entries is carried out using the Beylkin-type algorithm [11].

The Matrix compression based on Beylkin-type algorithm is very simple; besides we can

determine the optimal thresholding value for this algorithm as proposed in Ref.[18]. To

save the computational work, the truncation before generation of the entries – a priori

truncation – is carried out together with a posteriori truncation.

In assembly of the coefficient matrix, we first estimate approximations Gest and Hest for

every entry, prior to the calculation of equation (20). The a priori estimations Gest and

Hest are given to every submatrix concerning a certain combination of the basis functions

wp and wq, for the sake of simplicity of the algorithm. Besides, they are generated in

consideration of the periodicity conditions of the unit cell in order to avoid overtruncation.
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If a priori estimations Gest and Hest satisfy the following truncation criteria:

Gest < τ ·Gmax, Hest < τ ·Hmax, (27)

then, the entries are regarded as zero and they are truncated without calculation of equa-

tion (20). In criterion (27), Gmax and Hmax are the representative values of the matrix

coefficients |g(α)(p,q)(i,j)| and |h
(α)
(p,q)(i,j)|, respectively. Moreover, τ is the optimal threshold

parameter, and its value is determined by the practical strategy developed by the authors

[18]. Justification of the present strategy will be verified in the next section.

Gest and Hest are generated by derivative-type estimation; however, this approach is not

straightforwardly applied to the BE-based homogenization analysis. This is because we

need to impose the periodicity conditions of the unit cell on boundary element equations

(18) and (19) and to implement the rearrangement algorithm to attain the termination of

the iterative process with less computational work. Since the setting of such estimations

to inappropriate values incurs overtruncation under certain circumstances, we define a

priori estimations Gest and Hest as follows:

Gest :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ḡ
(α)
wp,wq , (supp wp ∈ S, supp wq ∈ S)

ḡ
(α)
wp,wq + ḡ

(α)
wp,wq(opp) , (supp wp ∈ S, supp wq ∈ Γ)

ḡ
(α)
wp,wq + ḡ

(α)
wp(opp),wq , (supp wp ∈ Γ, supp wq ∈ S)

ḡ
(α)
wp,wq + ḡ

(α)
wp,wq(opp)

+ḡ
(α)
wp(opp),wq + ḡ

(α)
wp(opp),wq(opp) , (supp wp ∈ Γ, supp wq ∈ Γ)

(28)

Hest :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h̄
(α)
wp,wq , (supp wp ∈ S, supp wq ∈ S)

h̄
(α)
wp,wq + h̄

(α)
wp,wq(opp) , (supp wp ∈ S, supp wq ∈ Γ)

h̄
(α)
wp,wq + h̄

(α)
wp(opp),wq , (supp wp ∈ Γ, supp wq ∈ S)

h̄
(α)
wp,wq + h̄

(α)
wp,wq(opp)

+h̄
(α)
wp(opp),wq + h̄

(α)
wp(opp),wq(opp) , (supp wp ∈ Γ, supp wq ∈ Γ)

(29)

where ḡ
(α)
(wp,wq)

and h̄
(α)
(wp,wq)

are approximate values of |g(α)(p,q)(i,j)| and |h
(α)
(p,q)(i,j)| that are

esimated by the derivative-type approach, and they represent the magnitude of the entries

in the submatrices {g(α)(p,q)(i,j) |i, j = 1, 2} and {h
(α)
(p,q)(i,j) |i, j = 1, 2} for the in-plane analysis,

and of the entries g
(α)
(p,q)(3,3) and h

(α)
(p,q)(3,3) for the out-plane analysis.

On the other hand, the matrix entries over a fixed thresholding value are calculated

by equation (20). When the matrix elements g
(α)
(p,q)(i,j) and h

(α)
(p,q)(i,j) hold the following

inequalities:

|G(α)(p,q)(i,j)| < τGmax, |H(α)
(p,q)(i,j)| < τHmax, (30)

then, these entries are truncated a posteriori. In inequality (30), G
(α)
(p,q)(i,j) and H

(α)
(p,q)(i,j)

are the matrix entries of equation (26), and correspond to the entries g
(α)
(p,q)(i,j) and h

(α)
(p,q)(i,j)

generated by double integrals concerning the kernel functions u
(α)∗
ij and p

(α)∗
ij , respectively.
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In the present study, the truncation of small matrix entries is carried out to equation (26)

with the periodicity conditions and the rearrangements. However, we can also make a

sparse system of boundary element equation by application of the present compression

scheme to equations (18) and (19). The validity of this strategy and the influence of the

present compression schemes on the computational performance will be examined through

numerical experiments in the next section.

4 Numerical results

In the preceding section, we have attempted to develop a wavelet BEM that shows

high computational performance in the homogenization analysis. To achieve it, we have

proposed two strategies: the rearrangement of boundary element equations and the matrix

compression strategy. In this section, we will verify the availability of such strategies.

Furthermore, the behavior of errors of the effective elastic moduli will be investigated

through numerical experiments.

4.1. Problem descriptions

In the present study, we adopted unidirectional composites with 4 kinds of microstruc-

tures as the test examples. The geometrical profiles of these examples are shown in Figure

4. The unit cells in these examples are given as unit squares in every case, and the cir-

cular voids with radii R1 = 1/6, R2 = 1/18 and R3 = 1/54 or the rectangular voids with

sizes L1 = 1/3, L2 = 1/9 and L3 = 1/27 are embedded in the matrix (Young’s modu-

lus: E(2) = 1, Poisson’s ratio: ν(2) = 0.3). We now discuss the characteristic functions

χ11, χ22, χ33 and χ12 that have only the in-plane components. Then, we can evaluate 7

independent components of the effective elastic moduli excepting D2323 and D3131.

As mentioned above, four kinds of the characteristic functions – χ11, χ22, χ33 and

χ12 – are calculated using the wavelet BEM for 2-D elastostatic problems. Then, the

boundary element equations concerning χkl are derived for a matrix phase with voids as

follows:⎡⎣ HS̄,S̄ HS̄,Γ̄0 + ρΓ0HS̄,Γ̄0(opp)

HΓ̄0,S̄ + ρΓ0HΓ̄0(opp),S̄ (HΓ̄0,Γ̄0 + ρΓ0HΓ̄0,Γ̄0(opp)) + ρΓ0(HΓ̄0(opp),Γ̄0 + ρΓ0HΓ̄0(opp),Γ̄0(opp))
HΓ̄0,S̄ − ρΓ0HΓ̄0(opp),S̄ (HΓ̄0,Γ̄0 + ρΓ0HΓ̄0,Γ̄0(opp))− ρΓ0(HΓ̄0(opp),Γ̄0 + ρΓ0HΓ̄0(opp),Γ̄0(opp))

−(GS̄,Γ̄0 − ρΓ0GS̄,Γ̄0(opp))

−(GΓ̄0,Γ̄0 − ρΓ0GΓ̄0,Γ̄0(opp))− ρΓ0(GΓ̄0(opp),Γ̄0 − ρΓ0GΓ̄0(opp),Γ̄0(opp))
−(GΓ̄0,Γ̄0 − ρΓ0GΓ̄0,Γ̄0(opp)) + ρΓ0(GΓ̄0(opp),Γ̄0 − ρΓ0GΓ̄0(opp),Γ̄0(opp))

⎤⎦⎧⎨⎩
Xkl
S̄

Xkl
Γ̄0

Tkl
Γ̄0

⎫⎬⎭
=

⎧⎨⎩
GS̄,S̄TS̄
GΓ̄0,S̄TS̄

GΓ̄0(opp),S̄TS̄

⎫⎬⎭ .
(31)

where TS̄ is the known vector of which components are given by expansion coefficients

of the force E
(2)
ijkln

(2)
j on the boundary S̄. In this study, linear algebraic equation (31) is
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(a) Ex.1.

(c) Ex.3.

(b) Ex.2.

(d) Ex.4.

Figure 4: Unit cells in the present numerical tests. (Radii of circular voids: R1 = 1/6,

R2 = 1/18 and R3 = 1/54, sizes of rectangular voids: L1 = 1/3, L2 = 1/9 and L3 = 1/27)

constructed using Haar wavelets. It follows that the matrix ρΓ0 is defined by

ρΓ0 = {ρ(p,q)(i,j)} =

⎧⎪⎨⎪⎩
1, (p = q, i = j, wp = φ),

−1, (p = q, i = j, wp = ψ),

0, (otherwise),

(32)

where p, q = 1, . . . , (N − Ns)/2 and i, j = 1, 2. ρΓ0 is a diagonal matrix, and hence

ρTΓ0 = ρΓ0 .

4.2. Numerical approach of singular and nearly-singular integrals

In assembly of equation (31), we have to calculate double integrals (20) on the bound-

aries S̄ and Γ̄0. Through this calculation, we generate the coefficient matrix entries using

a hybrid scheme of analytical integration and the wavelet-weighted quadrature formulae

proposed in Ref. [19]. The analytical integration scheme is applied to the integral on a

straight line in the case of 2-D elastostatic problems. On the other hand, the numerical in-

tegration scheme, in which the wavelet-weighted formulae are adopted, is used to calculate

another-type integrals in the current examples. Then, the numerical integration without
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any regularization and smoothing of the kernel functions causes the accuracy reduction of

the singular- and nearly singular integrals. We hence calculate these integrals using the

wavelet-weighted formulae with the subtraction approach [20][21], and will consequently

prevent the accuracy reduction.

Let us first consider a double integral with a singular kernel defined as:

I(p,q) :=

Z hx/2

−hx/2
wp(ξ)

Z hy/2

−hy/2
K(ξ, η)wq(η)Jq(η)dη Jp(ξ)dξ, (33)

where the kernel function K(ξ, η) is given by ln r(ξ, η) or 1r
∂r
∂s . Jp(ξ) = dΓ/dξ and Jq(η) =

dΓ/dη, and wp and wq are basis functions. Moreover, it is assumed that supp wp =

[−hx/2, hx/2] and supp wq = [−hy/2, hy/2].
In the present examples, we need to deal with a singular integral on a circular arc, and

then Jp(ξ) and Jq(η) are constants J̄p and J̄q, respectively. That is,

I(p,q) := J̄pJ̄q

Z hx/2

−hx/2
wp(ξ)

Z hy/2

−hy/2
K(ξ, η)wq(η)dη dξ, (34)

We now isolate a singular term Ks included in the original integrand K as follows:

K = (K −Ks) +Ks. (35)

In this study, Ks is given by the asymptotical expansion of the singular kernel K around

a singular point η0 on the intrinsic coordinate η as

Ks =

⎧⎪⎨⎪⎩
ln J̄q|η − η0|, (K = ln r),

1

J̄q(η − η0)
, (K =

1

r

∂r

∂s
).

(36)

Substituting equation (35) into (34), the singular integral I(p,q) can be rewritten by

I(p,q) = J̄pJ̄q

Z hx/2

−hx/2
wp

Z hy/2

−hy/2
Kswqdη dξ + J̄pJ̄q

Z hx/2

−hx/2
wp

Z hy/2

−hy/2
(K −Ks)wqdη dξ. (37)

In these integrals, the first term of the right-hand side is calculated analytically, which

stems from that we can describe η0(ξ) as a linear transformation η(ξ) = a1ξ + a0 (a0, a1:

constants). On the other hand, the second term is evaluated using the wavelet-weighted

formulae. Since the integrand (K −Ks) is no longer singular kernel, this integral can be
calculated by numerical procedure.

Secondary, let us consider a double integral with nearly-singularity. The nearly-singularity

occurs in the integrands concerning six kernels: ln r, 1r
∂r
∂n ,

1
r
∂r
∂s and

1
r
∂r
∂n

∂r
∂xi

∂r
∂xj

(i, j = 1, 2).

To ensure a sufficient accuracy for the numerical integration, we employ the subtraction

approach analogous to the above regularization scheme as a smoothing technique. We thus

deal with the following integrals in order to remove the nearly-singularity of the integrand:

I(p,q) = J̄pJ̄q

Z hx/2

−hx/2
wp

Z hy/2

−hy/2
Kvwqdη dξ + J̄pJ̄q

Z hx/2

−hx/2
wp

Z hy/2

−hy/2
(K −Kv)wqdη dξ, (38)
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where Kv is the nearly-singular term included in the kernel K. In implementation of

integration, the nearly-singular term Kv is separated from K by its Taylor expansion

around the closest point on supp wq to a source point. Since Kv is defined as either a

logarithmic function or a rational function of η, and the integrals concerning Kv can be

calculated analytically with respect to η. By defining Iv(ξ) as

Iv(ξ) :=

Z hy/2

−hy/2
Kvwq dη, (39)

equation (38) is rewritten by

I(p,q) = J̄pJ̄q

Z hx/2

−hx/2
wpIvdξ + J̄pJ̄q

Z hx/2

−hx/2
wp

Z hy/2

−hy/2
(K −Kv)wqdη dξ. (40)

In equation (40), the remaining integrals are evaluated by a numerical integration scheme.

Like singular integrals, the second term of the right-hand side can be straightforwardly

calculated by applying twice the wavelet-weighted formulae, because the integrand K−Kv
is sufficiently smooth. Its first term however, has the kernel function Iv(ξ) with wide

variation according to circumstances. In this situation, the present strategy is no longer

available, and hence we have to utilize other smoothing techniques, e.g. widely-used

subelement approach [22] and non-linear transformation [23]. Then, we must use the

Gauss-Legendre formula as a numerical integration scheme, instead of the wavelet-weighted

formulae.

4.3. Availability of matrix compression scheme

We first verify the validity of the present matrix compression strategy in which the trun-

cation of small entries is applied to the matrix coefficients of boundary element equation

(31) with the rearrangement introduced in Section 3.2. As presented in the preceding sec-

tion, the selection of truncated entries is carried out twice: before and after the assembly

of boundary element equations. A priori truncation before assembly requires estimation of

the matrix coefficients. In this study, we generate a priori estimates ḡ
(α)
(wp,wq)

and h̄
(α)
(wp,wq)

in equations (28) and (29) by derivative-type approach as follows:

ḡ
(α)
(wp,wq)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

cpcqJ̄pJ̄q

8πG(α)(1− ν(α)) ·
hxh

2
yJ̄q

4
· 5− 4ν

(α)

r̄
, (wp = φ, wq = ψ),

cpcqJ̄pJ̄q

8πG(α)(1− ν(α)) ·
h2xhyJ̄p
4

· 5− 4ν
(α)

r̄
, (wp = ψ, wq = φ),

cpcqJ̄pJ̄q

8πG(α)(1− ν(α)) ·
h2xh

2
yJ̄pJ̄q

16
· 5− 4ν

(α)

r̄2
, (wp = ψ, wq = ψ),

(41)

h̄
(α)
(wp,wq)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

cpcqJ̄pJ̄q

4π(1− ν(α)) ·
hxh

2
yJ̄q

2
· 5− 2ν

(α)

r̄2
, (wp = φ, wq = ψ),

cpcqJ̄pJ̄q

4π(1− ν(α)) ·
h2xhyJ̄p
2

· 5− 2ν
(α)

r̄2
, (wp = ψ, wq = φ),

cpcqJ̄pJ̄q

4π(1− ν(α)) ·
h2xh

2
yJ̄pJ̄q

4
· 5− 2ν

(α)

r̄3
, (wp = ψ, wq = ψ),

(42)
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Figure 5: Influence of truncation strategy on compression rates of the coefficient matrix.

(Ex.1)

where r̄ := dist(supp wp, supp wq).

The validity of the present compression strategy is discussed based on the results of nu-

merical tests: we chose Ex.1 as the test example. In numerical experiments, the truncation

of small matrix entries was applied to either

(i). the matrix entries g
(α)
(p,q)(i,j) and h

(α)
(p,q)(i,j) of original boundary element equations (18)

and (19), or

(ii). the matrix coefficients obtained by assembling boundary element equation (31).

Note that in approach (i) the continuous and equilibrium conditions (21) on S̄ and Γ̄

and rearrangements (25) are imposed on equations (18) and (19) after truncation. We

show the compression rates of the resulting matrix under the above alternatives in Figure

5. Approach (ii) presented in the preceding section yields higher compression rates of

the system matrix than that for approach (i); besides, predominance of approach (ii) on

sparseness is independent of the truncation tolerance τ . The same tendency as the present

results has been found for other examples, though we omit to indicate these results. As a

result, we can conclude that approach (ii) provides higher matrix compression rates than

approach (i) under the same threshold.

We next investigate the justification of the optimal threshold parameter determined

by the practical strategy developed in Ref. [18]. In this study, the optimal threshold

parameter was set to

τ := min
kl=11,22,33,12

kcklk
2kH(2)k · kχklk ≈

1

2kH̄(2)k minkl α(kl) −β(kl) , (43)

ckl := {cklp,i},

ckl(p,i) := −
1

2
δij

Z
S̄+Γ̄

wp(χ
kl
j − χ̂klj ) d(∂Y2)−

Z
S̄+Γ̄

wp

Z
S̄+Γ̄

p
(2)∗
ij (χklj − χ̂klj ) d(∂Y2),

(44)
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Figure 6: Influence of the threshold parameter τ on the relative errors of effective elastic

moduli. D̄ijkl was evaluated by the BE solution χ̃
kl with a sufficient large DOF.

µ
Ex.1

and Ex.2, τ := min
kl

||ckl||
2 · ||H|| · ||χkl||

¶

where is the degree of freedom of simultaneous equation (31). χ̂klj is the wavelet

expansion of the true solution of the characteristic function χklj . Since (χ
kl
j − χ̂klj ) cannot

be exactly evaluated in general, we approximate it as follows:

χklj − χ̂klj ≈ χ̌klj − χ̃klj , (45)

where χ̌klj is a higher-order interpolation of the BE solution χ̃
kl
j .

In the present determination strategy, we originally need to evaluate kcklk/kχklk and
kH(2)k corresponding to the approximate solution with the same DOF as the main anal-
ysis. Such evaluation is however, unrealistic due to the expensive computational cost of

pre-processing for determining the thresholding value. Hence, the value of kcklk/kχklk is
estimated using the approximate expression α(kl) −β(kl) : the parameters α(kl) and β(kl)

are set in advance based on the BE solutions corresponding to sufficient small DOFs.

kH(2)k is also approximated by the norm of a small-size matrix H̄(2) used in the determi-

nation process of the parameters α(kl) and β(kl).

Now, the thresholding value τ determined by equation (43) is validated based on the

relative errors of the effective elastic moduli Dijkl. We show the relation between the

threshold parameters and the relative errors of Dijkl in Figure 6. The numerical results

indicate the behavior of the relative errors in homogenization analyses for Ex.1 ( =

1, 536) and Ex.2 ( = 1, 024). Moreover, the dashed line shows the level of the optimal

threshold parameter τ evaluated by equation (43). Notice that in this stage τ is calculated

using the true value of kcklk/kχklk in order to remove the influence of approximation error.
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Figure 7: The number of non-zero entries of the coefficient matrix.

Under the optimal value τ , the relative errors of Dijkl are comparable to the errors

for sufficiently small thresholding values, which implies that the truncation using the

estimated value of τ does not cause overtruncation and deterioration of accuracy of the

effective moduli. Since the error due to the truncation under a smaller thresholding value is

negligible in comparison with the discretization error, the relative error can be regarded as

discretization error. Besides, the relative error increases in the range where the threshold

parameter is over the value of τ . A sequence of the above facts indicates that the practical

strategy developed in Ref.[18] enables us to accurately determine the optimal value of the

threshold parameter in the homogenization analysis.

The number of non-zero entries of the coefficient matrix under each DOF is shown in

Figure 7. The number of non-zero entries has a dependency on degrees of freedom of

O( 1+γ) (0 ≤ γ < 1) for the present truncation method. In these examples, we obtained

γ = 0.76 (Ex.1) and γ = 0.32 (Ex.2), i.e., O( 1.76) and O( 1.32) complexity. Unfortu-

nately, the Beylkin-type algorithm proposed in Ref. [18] does not have the complexity of

O( (log )α). However, since the matrix compression reduces the order of complexity

from O( 2) (dotted line) to O( 1+γ) (solid lines), application of wavelet BEMs yields

the remarkable computational merit – higher compression rate of the coefficient matrix

– in the range of larger DOF, especially for Ex.2.

4.4. Effectiveness of rearrangement of boundary element equation on acceleration of it-

erative process

As presented in Section 3.2, we construct the rearrangement algorithm for boundary

element equation (22) as a preconditioner for the coefficient matrix in which dominant

elements do not always distribute in the vicinity of matrix diagonal. This subsection is

devoted to the verification of effectiveness of the rearrangement introduced in equation

(31). In numerical experiments, the system matrix of boundary element equations is

18



(a) Number of iterations

for solving BE equation.

(b) Compression rate of the coefficient

matrix.

Figure 8: Influence of rearrangement of BE equation on computational performance in

Ex.1.

compressed by approach (ii) presented in the preceding subsection. Hence, the truncation

of small matrix entries is carried out to algebraic equation (26) or (31).

We first depict the number of iterations for solving of the boundary element equations

in Figure 8(a). Here we show the numerical results for Ex.1. In numerical analysis, we

adopted the restart version of the preconditioned GMRES [24] as a solver; the restart

parameter was set to 100. Moreover, the Jacobi preconditioning was used in the iterative

process, in addition to the present rearrangement process. For the boundary element equa-

tions without rearrangement, about 200 iterations are required to attain the convergence

when the DOF is greater than 1, 000. This large number of iterations is however, decreased

drastically by application of the present rearrangement algorithm: in this example with

the rearrangement the number of iterations was 20 — 40 times. In other words, we were

able to achieve 1/4 — 1/5 saving of computational work for solving the boundary element

equations. Note that the present rearrangement is effective for any DOF, as shown in

Figure 8(a). Thus, we can conclude that the rearrangement introduced in Section 3.2 is

robust for increase in DOFs.

Next, let us consider the influence of rearrangement on the sparseness of the coefficient

matrix. We show the compression rate of the system matrix with and without rearrange-

ment, in Figure 8(b). Since the rearrangement introduced in Section 3.2 requires the

addition and subtraction of matrix entries, the sparseness of the coefficient matrix seems

to be changed by the rearrangement. Indeed, the number of non-zero entries is scarcely

influenced by application of the present rearrangement algorithm, as shown in Figure 8(b).

This manipulation does not lead to the decay of sparseness.

Through a sequence of numerical results, we have verified the effectiveness of the pro-
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Figure 9: Relative errors of effective elastic moduli D1122, D2222, D3333, D2233 and D1212,

and the residual norm kcklk/kχklk. (Ex.1 and Ex.2, Error(ijkl) := |Dijkl − D̄ijkl|/|D̄ijkl|
where the value of D̄ijkl was evaluated by the BE solution χ̃

kl with a sufficient large DOF.

)

posed rearrangement algorithm, and have shown that the present matrix compression en-

ables us to reduce the computational cost of BE-based homogenization analysis. However,

the above discussion may be no longer consistent for microstructure with some inclusion.

This is based on the following two facts: (i) we dealt with the heterogeneous media with

microscopic voids in the present examples. And (ii) the rearrangement of equations for the

microscopic problems with inclusion yields many fill-in entries. As a result, equation (26)

to which the present rearrangement algorithm is applied has quite different non-zero popu-

lation of the matrix, in comparison with equation (22) without rearrangement. Therefore,

we will need to further investigate the sparseness of the system matrix in this situation.
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4.5. Asymptotical convergence of effective elastic modulus

As mentioned in Section 1, the homogenization analyses using the BEM have been

attempted by several engineers. Their attempts are based on the advantages of the BEM:

the easy generation of boundary elements and the accurate evaluation of the effective

elastic moduli. Okada et al. [6] have discussed the relation between the evaluated values

of the effective moduli and the number of boundary elements; however, the behavior of

errors included in the effective moduli have not been clarified. We thus investigate the

errors of homogenized elastic moduli, from a viewpoint of asymptotical convergence.

Figure 9 depicts the relation between DOFs and the relative errors of the effective

elastic moduli D1122, D2222, D3333, D2233 and D1212. We present the numerical results

corresponding to Ex.1 and Ex.2 in this figure; besides, the values of the residual norms

kcklk/kχklk, indicating the discretization error of BE solutions, are also shown in order to
compare with the asymptotical convergence rates of χkl. In this figure, Error(ijkl) stands

for the relative error of Dijkl and is defined by

Error(ijkl) :=
|Dijkl − D̄ijkl|

|D̄ijkl|
,

where Dijkl is the effective modulus evaluated by the present scheme. And D̄ijkl is the

true value of the effective modulus. In the present example, we use the value evaluated

by the BE solution with a sufficient large DOF for D̄ijkl.

In the evaluation of effective elastic moduli, we computed the values ofDijkl by boundary

integral form (13) which consisted of a boundary integral concerning χkl. Hence, the

effective moduli Dijkl converge roughly with the same asymptotical rates as those of the

characteristic functions χ. Note that the rate of convergence in Ex.2 is lower than in

Ex.1 because of the existence of singularity. Okada et al. [6] have pointed out that the

BEM enables us to accurately evaluate the effective elastic moduli even under small DOFs.

The justification of such suggestion may be verified by the present investigation from a

viewpoint of asymptotical convergence of both χkl and Dijkl.

Next, let us consider the relation between the void size and the errors of the effective

elastic moduli. The errors of 5 components D1111, D1122, D1133, D3333 and D1212 under

several void sizes L1 in Ex.2 are shown in Figure 10. D1111, D1133 and D3333 scarcely

depend on the void size, while the errors of D1122 and D1212 are sensitive to the size L1.

In particular, the components D1212 is very sensitive to large size of rectangular void.

The stress concentration at the corners of rectangular voids will cause the reduction of

accuracy on the effective moduli. In this situation, we have to set the DOF of the BE

solution χ̃kl to a larger number, in order to ensure the accuracy of all components of Dijkl

for large void size.

As mentioned above, the effective elastic moduli can be efficiently evaluated by the BE-

based homogenization approach. If a phase of microstructure is simple one like Ex.1 and

Ex.2, we will be able to estimate the effective moduli with very small DOF. However,

for the microstructures with many inclusions or voids, e.g. Ex.3, we cannot avoid deal-

ing with a large-scale problem. In this situation, the main drawback of BE analysis –
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Figure 10: Relation between the relative errors of effective elastic moduli and the void size

L1 in Ex.2.

large computational cost – becomes an essential obstacle. To overcome this difficulty,

application of the wavelet BEM to the homogenization analysis will be effective. We now

tabulate the resulting effective moduli, the thresholding values, the compression rates of

the system matrix and the overall CPU time for the homogenization analysis, in Table 1.

Note that the numerical results presented in this table correspond to Ex.3 and Ex.4 shown

in Figure 4. In the present homogenization analyses, 50 — 80 % of memory requirements of

conventional BE analyses were saved using the wavelet BEM. Although the case of 5,888

DOF in Ex.3 has almost the same number of stored entries as the case of 5,632 DOF in

Ex.4, the former spends three times of CPU time of the latter. The reason is that the

numerical integrations are used in Ex.3 and these spend much computation time.

5 Conclusions

In the present paper, we have introduced homogenization analysis using the wavelet

BEM, and have attempted to reduce the computational cost for the BE-based homoge-
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Table 1: The homogenized elastic moduli evaluated by the wavelet BEM and the compu-

tational cost of the homogenization analysis. (Ex.3 and Ex.4. τ is the optimal threshold

parameter, which is set by the present determination strategy.)

(a) Ex.3.

1,492 DOFs 2,944 DOFs 5,888 DOFs

D1111 0.67001 0.66155 0.65897

D2222 0.66913 0.66122 0.65922

D3333 0.92954 0.92716 0.92655

D1122 0.23784 0.23279 0.23166

D1133 0.27235 0.26830 0.26719

D2233 0.27209 0.26820 0.26726

D1212 0.10898 0.10373 0.10214

τ 1.829× 10−4 5.031× 10−5 1.319× 10−5
Comp. rate (%) 46.81 40.74 34.29

CPU time (sec) 336.37 940.36 3213.90

(b) Ex.4.

2,816 DOFs 5,632 DOFs 11,264 DOFs

D1111 0.47872 0.48252 0.48477

D2222 0.47872 0.48252 0.48477

D3333 0.80907 0.81011 0.81082

D1122 0.11424 0.11623 0.11793

D1133 0.17789 0.17962 0.18081

D2233 0.17789 0.17962 0.18081

D1212 0.08954 0.09155 0.09254

τ 1.914× 10−5 9.173× 10−6 4.458× 10−6
Comp. rate (%) 54.19 35.60 21.66

CPU time (sec) 379.39 906.11 2349.81

nization analysis. The formulation for microscopic problems using the wavelet BEM has

been described. Besides, we have introduced additional numerical techniques: the matrix

compression, the determination of an optimal threshold parameter and the rearrangement

of boundary element equations.

The compression scheme and the determination strategy of the optimal thresholding

value have been constructed based on the scheme developed in Ref. [18]. The matrix com-

pression using their algorithms is available for the present 2-D elastostatic homogenization

analysis. Since the threshold parameter can be adequately set by the heuristic approach,

the implementation of wavelet BEM is effective in the homogenization analysis.
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On the other hand, the algorithm of the equation rearrangement has been constructed as

a preconditioner to solve the boundary element equations using an iterative solver. In the

BE-based homogenization analysis, we assemble a system of algebraic equations through

imposing periodicity conditions of microstructures. Then, the resulting equations have

the coefficient matrix where dominant entries are not always populated in the vicinity of

diagonal. When we solve these equations with an iterative solver, such a matrix population

causes the increase in the number of iterations, in general. This computational problem

can be settled by application of the rearrangement scheme. In the present numerical

experiments, we have achieved the reduction of the computational work for iterations up

to 1/4 — 1/5 of that for the simultaneous equations without rearrangement.

Finally, we have investigated the behavior of errors in the effective elastic moduli eval-

uated by BE-based homogenization analysis. Since the effective moduli are evaluated by

boundary integrals with the microscopic perturbed displacements χkl, we have obtained

the same asymptotical convergence rates as those of BE solutions χ̃kl. As mentioned in

Ref. [6] and this paper, the BE-based approach enables us to accurately evaluate the

effective moduli even under small DOF. However, we will certainly encounter rising of

computational cost, if we apply the homogenization method to heterogeneous media with

complicated phases of microstructures. In addition, a large system of BE equations has to

be dealt with for microscopic problems with large size voids or with stress concentrations.

Then, application of the wavelet BEM will be effective for the reduction of computational

cost in BE analysis. In the present study we employed the wavelet BEM as a numerical

tool in the microscopic analysis for heterogeneous media with many voids: the effective

elastic moduli with agreement of 2 — 4 digits can be evaluated using 20 — 50 % memory

requirements of conventional BE approaches.
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