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Basedonmeasuringone-dimensionalsmallrotationanglesbyusingaparallelinterferencepattern(PIP),
amethodlormeasuringtwo-dimensional(2D)smallrotationanglesbyusingtwodifferentPIP'sthatare
orthogonaltoeachotherisproposed.Wesimultaneouslymeasurethe2DsmallrotationanglesΔθand
ΔΦbydetectingthephasesoftheorthogonalPIP'sreflectedbyanobjectattwodetectionpoints.A
sensitivityof4.9mrad/arcsecandaspatialresolutionof1.5×1.5mm^2areachievedinthemeasurement.
Theoreticalanalysisandexperimentalresultsshowthaterrorε1inthemeasurementofΔΦisalmost
equalto-0.01Δθanderroreε2inthemeasuremcntofΔθisalmostequalto-0.01AΔΦ.Forsmallrotation
anglesoflessthanafewtensofarcseconds,therandomerrorswhosestandarddeviationsare0.6arcsec
aredominant.c1996OpticalSocietyofAmerica
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1. Introduction 

When two collimated laser beams intersect a small

angle, a parallel interference pattern (PIP) occurs.

In our previous paper,1 we described a method for

measuring one-dimensional small rotation angles by

using a PIP. In this paper, we develop a method for

measuring simultaneously two-dimensional (2D)

small rotation angles by using two different PIPs

that are orthogonal to each other. The methods that

use a Michelson interferometer2-・1 and an autocolli-

mator56 can also be used to measure 2D small rota-

tion angles. However, as described in our previous

paper,1 the low spatial resolution of these methods

cannot be avoided. The methods using a Michelson

interferometer have a trade-off between spatial reso-

lution and angular sensitivity. The method, by us-

ing a PIP, does not have this trade-off. The spatial

resolution is determined by the period space of the
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PIP. The sensitivity depends on the period space of

the PIP and the positions of the two detection points

atwhich the phases of the PIP are detected. We can

obtain a high sensitivity by adjusting the positions of

the two detection points. So, it is significantthat the

method, by using a PIP, is developed to measure 2D

small rotation angles. A sensitivity of 4.9 mrad/

arcsec and a spatial resolution of 1.5 × 1.5 mm- are

achieved in our measurement.

In Section 2 we generally analyze a parallel pattern

reflected by an object to obtain the phase changes on

the two detection points resulting from the rotation of

the object. From the results in Section 2, we deter-

mine two kinds of incident PIP to measure indepen-

dently two angles of2D rotation in Section 3. When

the necessary alignments of the incident PIP's and

the object given in Section 3 are not done exactly, we

have measurement errors. We analyze these errors
in detail in Section 4. We describe the charactens-
tics of our method in Section 5. In Section 6 we

present an experimental setup in which we use sinu-

soidal phase-modulating interferometry and a feed-

back control system to eliminate the effects of

mechanical vibrations. In Section　7　we examine

how the errors appear in the measurement of 2D

rotation angles and show that the theoretical analy-

sis of our method is supported by experimental re-

suits.
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Fig. 1. Reflection ofa parallel interference pattern.

2. Reflection of a Paral一el Interference Pattern

As shown in Fig. 1, a PIP occurs when two collimated

laser beams intersect a small angle tト　The PIP con-

sists of some alternating dark and bright planes be-

tween which the phase changes from 0 to 2tt. We
define an equiphase plane as the plane on which the

phases of the PIP are constant. The equip!ュase

plane of the PIP is called the EPP in this paper. We
have an orthogonal coordinate system o-xyz. The

propagation direction of the incident PIP is the bisec-

tor of angle tj and parallels the z axis. The direction

of the EPP in the incident PIP is represented by the

normal unit vector rct(cos β, cos 7, cos 90-). Thex-z

andy-z planes denoted by E and F, respectively, are

regarded as two reference planes for the measure-

merit. A plane surface of the object is represented by

its normal vector ∂(8, (})). The 0 and (J> are the angles

between the z axis and the projections of the normal

vector ∂(0, c{>) on planes E and F, respectively. The

surface of the object reflects the incident PIP. The

direction of the EPP in the reflected PIP is repre-

sented by its normal unit vector h(nx　′与n-.). The

o'-x'yz'is another orthogonal coordinate system in

which the angle between thejc andx'axes is 20. The

normal vector n is determined by the normal vector

unit h: and the normal vector ∂(e, 4>).

First, let us derive the expression ofh{nェ・, nv, n--).

When 6 -巾- 0 the normal unitvectorh。 of the EPP

in the reflected PIP is equal to the normal unit vector

hi of the EPPin the incident PIP. As shown in Fig.

2(a), h。 is given by

/i0 - {nQx, nOv, nO:¥r (1)

where

nax-cosβ,　n^-cos7,　no;-cos90--0. (2)

When 6 ≠ 0, angle 6 0f the object makes the EPP in

the reflected PIP rotate by angle 26 around they axis.

This means that vector n。∫ rotates by angle 26

around they′ axis in theェーz plane and vector nOv does

not change, as shown in Fig. 2(b). The normal unit
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(C)

Fig. 2. Change in the unit normal vector n of the reflected

equiphase plane, (a) Unit normal vector n。 at 6-<¥> -　0. (b)

Rotation of vector nt) by angle 0 of the object, (c) Rotation of vector

ii; by angle e of the object.

vector n。 changes to

nx -{n^-,nu,nl:],

where

(3)

nlx -cosβ.　n1、.-cos-y,　nu -0.  (4)

In the coordinate system o-キyz, nアis expressed as

ho - ¥n-2xi ^2,. "*},　　　　(5)

where

tl出-nl. cos2B,　n,..-riy n<iz-n¥x-sm29. (6)

When c|> ≠ 0, angle cj> of the object makes the EPP in

the reflected pattern rotate by angle 2<j> around the x

axis. This means that vectors n2y and n^- rotate by

angle 2(J> around the jc axis in the y-z plane and the

vector n^ does not change. as shown in Fig. 2(c).

Thus the normal unit vector n., changes to

n3 - {n^, /i3v, n3z},

where

rc.it - rciv,　rc3v - nu. cos24> + rc.^ sm 2中,

n3; - -nu.sin2cb + ft.,-cos 2¢・

(7)

(8)

Substituting Eqs. (4) and (6) into Eqs. (8), we have

n:ix - cos β cos 26,

/i3v - cos7cos 2cj> + cos β sin29 sin2<}>,

n3.- -cosysin2(J>+cosβcos2cbsin29. (9)



Making a coordinate transformation from the o-xyz

system to the o'-x'yz'system for the expression offi3.
we obtain the expression of the normal unit vector h

in the o'-.〆yz'system as follows:

n -¥nJ,nv,a:一,

where

n∫ = ritec-s20 + n3,sin26,　ny - n3、..

n: - -n.ixsin20 +n3.cos2H.

(10)

(ll)

The two points, A(0, 0, 0) and B(-r。'.y。. -z。'), in the

O -X'yz'system are used to detect the phases of the
redected PIP. The distance between the two EPP's

that contain points A and B, respectively, is denoted

by d。. By defining vectorAB that connects points A
and B, we have

do(β,-y,0,4>)-n・AB-nxxo'+njo-nz-zo′　(12)

The phase difference between the two EPP's is ex-

pressed asα0 - k¥ - αBI whereaA and α　arethe

phases detected at the A and B points, respectively.

We obtain another expression for do as

rfo(β 7.e,4>)-　--s,　　(13)

where S is the period of the parallel interference

pattern. S is given by

s-
¥

2 sin(¶/2) '
(14)

where ¥ is the wavelength of the laser.
A small rotation of the surface in two dimensions

causesthe normal vector∂(0, ¢) to change to ∂(6 + AH,

4> + Ac}>). The AO and Ac♭ are 2D small rotation

angles of the object around the x and the y′ axes,

respectively. Substituting 0 + AB and cb + A(b for e

and (J), respectively, in Eq. (9) and performing the

coordinate transformation given by Eq. (ll), we ob-

tain the expression of the normal unit vector h in the

o'-x'yz'system after the 2D small rotation of the
l     l

object. This expression is given by Eq. (Al). The

distance between the two EPP's containing A and B

points, respectively, after the 2D small rotation is
lvritten as

d(β,7.e.4>,ユ0,A¢)-n AB.　　(15)

The phase difference α detected at A and B is ex-

pressed as α -　OL, - α6|, whereは　andαb arethe

phases detected at A and B, respectively, a氏er the 2D

small rotation of the object. We obtain another ex-

pression for d as

α

s.
d(β,7, B,<k A6,A<J>) -一丁

(16)

Fig. 3. Ideal cotlfiguration for measuringsmall rotation angleふI・.

From Eqs. (13) and (16), we have

Aα

-s,
d(β,7, 0, <!>、A8, A<|)卜d()岬,-・8'*) - 2,

where

(17

上は-α-α　　　　　　　　　　(18)

Equation (17) shows the relationship ofユα,ユ6, and

Acj). Parameters β, 7, ({> are related to the mea-

surement configuration. If we select appropriate

values for the parameters, the value of A6 or A<b can
be obtained from上α. In Section 3 we discuss these

appropriate values.

3. Configurations for the Measurement of 2D Rotation

Angles

We are interested in how to measure A6 or A8 inde-

pendently. As shown in Fig. 3, when c{) - 0 and the

EPP's in the incident PIP parallel plane E, that is, β

- 90o and 7 - 0、 by usingthe approximations for a

trigonometric function such as sin 2ユ0 ⊇≡ 2ユ0, sin 2A<})

芸2A({>, cos2A6 …≡ 1, cos2A(}> ≡ l inEqs. (12) and (15),

respectively, we have

d。 -y。,　　　　　　　　　　　　　　(19)

d -yQ+ 2上4>u。'cos26 -*。'sin 28).  (20)

Equations (19) and (20) are also found in Eqs. (A4)

and(A5)intheconditionsoft}) - Oand5j - 0. From

Eqs. (19) and (20).ユ(b is given by

A(ト-
d-do

2zo"
(21)

where

zo〝-(zo'cos26-xQ'sin20).(22)

SubstitutingEq.(17)intoEq.(21),weexpressA({)as

Aα
A<|)--S.
4-zo(23)
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Fig. 4. Ideal configuration for measuI・lngsmall rotation呈lngle AO.

It is clear that the measurement configuration ofFig.

3 provides an independent measurement ofAc}) with-

out any effect from A6. It is obvious that we can

independently measureユ8 without any effect from

A(b by using the measurement configuration where

the EPP in the incident PIP parallels the F plane and

0 - 0, d> ≠ 0 in vector ∂(0, <{)). However, the two

measurement configurations cannot be combined be-

cause vector ∂(0, <}>) is different in the two conhgura-

tions. To measure simultaneously the 2D small

rotation angles, A<{> and A6, we construct the conng-

uration for measuring AB shown in Fig. 4 with the

same phase-detecting points as those in Fig. 3. In

the configuration the EPP's in the incident PIP par-

allelplaneF,thatis,β - Oand7 - 90-. Inthesame

way that we obtain Eqs. (19) and (20), we have

d。 -x。',　　　　　　　　　　　　(24)

d -x。′ - 2zo'A6 + 2y。上。bsin 2B.　(25)

Equations (24) and (25) are also found in Eqs. (A7) in
the conditions of6 - 0, 8り- 0. Substituting Eqs.

(24) into (25). we have

Ae=-d二重+や,
2zo

(26)

where

や- (;yOAct) sin 2e)/2。'.　　　(27)

When20'≫yo and 6 are small 9 is small enough to
be neglected in Eq. (27). For example, when zo'=

120mmj。- 1mm,8 -5-,andA心- 60arcsec,we

have甲- 0.087 arcsec. Substituting Eq. (17) into

Eq. (26) and neglectingや　we give the expression

ofA6 by

Aα

ユe--　　　s.
47720 '

(28)

Therefore we combine the two measurement conhg-

urations in Figs. 3 and 4. Two kinds ofユαs of the

re且ected orthogonal PIP's are detected, and the 2D
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small rotation angles are simultaneously measured

by Eqs. (23) and (28).

4. Nonideal Measurement Configurations

We refer to the measurement configuration in Fig. 3
or 4 as an ideal measurement configuration in which

the EPP in the incident PIP is absolutely parallel to

plane E or F and cb - 0 in vector∂(8, 4>). Butin

practice measurements, it is difficult to obtain abso-

lute alignments of the EPP's and the object. Now

angle cf> is not zero. The normal unit vectorn, of the

EPP in the incident PIP in Fig. 1 is expressed as

β-90--51,　7-51;　　　(29)

where angle hx is the inclination angle of the EPP in

Fig. 3. Similarly, the normal unit vector /?, of the

EPP in the incident PIP in Fig. 1 is expressed as

β-8.,　7-90- -8.,,　　　(30)

where angle 52 is the inclination angle of the EPP in

Fig. 4. We refer to these measurement conngura-

tions as nonideal measurement con丘gurations. In

the nonideal measurement con丘gurations, we mea-

sure two kinds ofユα.s and obtain the 2D rotation

angles from Eqs. (23) and (28). These measured ro-

tation angles are denoted byユ4,川and A Deriva-

tions ofAcj>川and A6,,, are given in AppendixA. They

are expressed as follows:

上4)間- -/?, Ae +Rv2上4),

上o川-/?,,ユ6 -/2,ユ4),

where

Rn-sin5,-
U。2cos20sin<})sinc{)+芸COS<¥>)¥,

(33)

Rv,-sin8,sin26sin2c|>+芸cos2心)

・cos8,cos2(j>一芸sin2c{>

2o
Rn-cos8J1-2cos26sin(j>-7sin

¥200

・芸cos6

(34)

(35)

Roo-cos82sin26:--sin2t()Hcos2c{>

。Z。/

・sin8..-cos24>一芸sin2S(36)

IfweknowthevaluesofRn,R12,#2i>and"22.we
canobtaintheactualanglesA(J>andA8fromthe

measuredvaluesA<t>,,,andユembysolvingEqs.(31)

and(32).Coe抗cients.Rn,/?12,R-2i、andRoocontain
thevaluesof5,,52,6,小,xo',yQ,andzo'.Itislm-
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Fig. 5. Relationshipsofratios/?,,,Ri2, R.2l, /?22 and angles 5,, 5.,, 0, (}>. (a) R呈itio/?,, versus angles 8,, 0, ty. (b) Ratio/?,._, versus angles

5j, e, <j). (cl Ratio R2, versus angles 82, 0, t>. (d) Ratio/?,.> vel・sus angles 8.^, 0, d>.

possibletoknowthevaluesof5jand52exactly.

Thusitisdi缶culttoobtaintheexactvaluesofR,い

R¥。,R
12'i121,andR-22-However,ifangles51582,B,andd)
arewithin±5-,thedifferencesbetweenthemeasured

rotationanglesandtheactualonesarelessthan10%.

ユd)′andA0,,,areexpressedas

A<J>,,, - A<♭ + E,,

AOm-A6+82,

where

E! - (Rv> - 1)ユ<j> -Ruユ0,　　　(39)

E, - (R2l - 1)A8 - #-Acf>.　　　(40)

The ex and e2 terms are regarded as errors caused by

nonideal measurement configurations.

Figure 5 shows coefficients Rn, R12 「 1,
and R22 versus angles 5j and 52 f-r various

R21-1,
values of

6andやatxf'-y。- 1mm,andz。'- 120mm.
Angles o and <S> are within ±5-. When angles 5L and

o2 approach zero, the coefficients are close to zero

exceptforRx2 - 1 atnonzerovaluesof6 and b. The

maximumvalueofR12-1isslightlyfurtherfrom8,

-0becauseofthefirstterminEq.(34).Thevalues

ofR12-1andi?2i--1arewithin-0.017when

angles8rand82arewithin±Thevalueof/?,,is
ll
almostconstantforthechangein0,(}>becausethe

secondterminEq.(33)isverysmall.i?niswithin

±0.012whenhxiswithin±1-.R22dependsonthe

valuesof8and<S>.R22iswithin±0.04when5.,is

within±1oR12-1,R2l-1,andR22atS-1-,6

-5-areveryclosetotheirvaluesat<}>-0-,6-0-but

areverydi丘'erentfromthemat(}>-5-,0-50.This

indicatesthatR12-1,#2i-1>an"-R・22aremore

sensitiveto(|>than6.

5.CharacteristicsoftheMethod

First,wediscusstheangularsensitivitythatisde-

finedastheratioofAαto△cj>orA8.FromEq.(23)

thesensitivityofA4>iswrittenas

Sel - 4fT2。′'/Sl,
(41)

where Sx is the period space of PIP 1, which is used

to measure angle A¢　From Eq. (28) we have the

1 October 1996 / Vol. 35, No. 28 / APPLIED OPTICS　　5661



sensitivity of -ユ0:

S,, - 4irzO′/S->,　　　　　(42)

where Sりis the period space of PIP 2, which is used

tomeasureangleAB. WhenS, - Sゥ- 1.5mm,zo′

- 120 mm, andzo" - 118 mm, a high angularsen-
//

sitivity of -4.9 mrad/arcsec is obtained from Eqs.

(41) and (42) for the measurement ofA¢ ol・ユ0.

Second, we consider the measurement ranges.

Phase difference α in Eq. (18) changes from 0 to 2-.

When phase difference αO is equal to tt in Eq. (18),

from Eqs. (23) and (28) we obtain the same measure-

ment range for the positive and negative small rota-

tion angles:

1

囲≦4koォSu

l

w≦毎語So.

WhenSx -Sり- 1.5mm・zQ'- 120mm,zo" - 118

/　　　　　　　　　　　　Jl

mm, the measurement range of ± 10 arcmin for上<i> or

ユ6 is obtained from Eqs. (43) and (44).

Third, let us consider the spatial resolution of the

method. Because PIP 1 and PIP 2 are orthogonal to

each other. the spatial resolution of the method is

given as

SR -Sl xS...　　　　　(45)

WhenSl - S2 - 1.5 mm, a spatial resolution ofl.5
× 1.5 mm- is obtained.

Fourth, in the practice measurement, the mechan-

ical vibrations cause the random errors in the phase

detection. Standard deviations of phase differences

αo and α in the measurement of angle A¢ are donated

by exQ,(A<t>) and Tα(A(j>), respectively. The standard

deviations in the measurement of angle AO are

け。.,(A6) and cT,(A9). We assume that

<wa小) - (xn(A<|)) - aa。(A6) - CTL.(ユ0) - (r. (46)

The random errors in the measurements of angles A<f)

and AO are expressed by eA and eユe, respectively.

From Eqs. (23) and (28) the standard deviations 〔 A*

and TAe of the random errors in the measurement of

angles AcJ> and A8, respectively, are given by

＼2(∫
--　　s.
4-20

r

＼I20・
s.

Uユo 4tt20'

(47)

(48)

When the feedback control systems are used to elim-
inate mechanical vibrations,けdecreases greatly.T

In experiments, cr decreases to -2 mrad from 0.1 rad

by feedback controllers. From Eqs. (47) and (48),

げA<i> and ∫上.I are -0.58 arcsec. Summing up the er-

rors caused from the nonideal measurement coring-
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Fig. 6. Experimental setup.

urations and the phase detections, we have

E上。ト- 」i + 」上か

Eユ　-」。+eユ。.

EA<1> and EA are errors in the measurement of 2D

small rotation angles A<b and A8, respectively, and

show us how accurately we can measure 2D small

rotation angles A(J> and A8 by Eqs. (23) and (28).

6. Expenmental Setup

Figure 6 shows an experimental setup for measuring

2D small rotation angles Ac}> and AO. The objectis an

optical surface. Two Twyman-Green-type inter-

ferometers are used to generate two sets ofPIP's that

are orthogonal to each other. The wavelength ofLD,

is780nm(/ - 1,2). ThePIPPx fromInterferometer

1 is parallel to the plane of the figure. The plane of

the figure is plane E. PIP P2 from Interferometer 2

is perpendicular to the plane of the figure. The an-

gle between the two laser beams from interferometer

is r¥t and the period of PIP P; is S,, respectively.

The beam splitter, BS 3, is used to make patterns Pi

and P2 overlap. They are incident on the optical

surface whose normal vector has small angles 9 and

¢ of less than 5-.

If we remove the optical surface, the two beams

from BS 1 or BS 2 separate at a position far from the



optical surface and are observed as two spots on a

plane perpendicular to plane E. The distance be-

tween the centers of the two spots from BS 1 indicates

the value of angle t^, and the distance between the

centers of two spots along a line parallel to plane E

indicates a value ofmisalignment angle 8x for PIP PT.

In the same way we know the value of angle ¶　and

the value of the misalignment angle b2 for PIP Pc

By the positions of two pairs spots, we adjust angles

Tl!, T]2, 0,, 52.

Because distance do between the two detection

points, A and B, is less than space S, two fibers stuck

together are used to detect the interference signals at

the two points. The outsider diameters of the fibers

are -1 mm, and their core diameters are 50　⊥m・

The optical丘bers are placed parallel to plane E and

along the propagation direction of reflected laser

beams to receive the light at points A and B. Thus

the direction of the optical fibers is along the2'axis as

shown in Fig. 3. The value of angle 6 is determined

by the angle between the optical fibers and the prop-

agation direction of the incident PIP. The value of

angle 6 is determined. The distance between points

A and B along the optical fibers corresponds to the

value of zO', and the distance between two optical

fibers along axesx'andy corresponds to the values of

.rO'and,y。, respectively. In our experiment the pa-
l

1

rametersarexo　-y0 - 0.75 mm,zo′ - 120 mm,z。〝

- 118mm,and0 -5-.

Two sinusoidal phase-modulating laser-diode in-

terferometers are used. To distinguish the interfer-

ence signals from Interferometers 1 and　2, the

injection currents of two laser diodes are modulated

with the sinusoidal wave signals ofzx cos u>xt and z2

cos ix)2t, respectively.8 In our experiment, cox/2T and

tu2/2-77 are 8 and 1 kHz, respectively. The two inter-

ference signals detected at points A and B are ex-

pressed as

SA - SM[COS(2! COS Idlt + αu)J

+ S2a[cOS(z2 COS ixi。t + α2A)¥,

SB - SIB[cos(21 cos wxt + ∝is)]

・S>2b[cos(z2 COS w2^ + α2fl)J.

(51)

(52)

The two optical丘bers are connected with two photo-

diodes, PDl and PD2. Interference signals SA and

SB are sent into a computer through an analog-to-

digital converter. With the technique of sinusoidal

phase-modulating interferometry the values of

phases αil" αiB {i - 1, 2) are detected. Thus we

obtain two kinds of phase difference αos for PIP Pl

and PIP P,　氏er the object rotates in two dimen-

sions in the same way we also obtain two kinds of

phase differenceαs forPIPPx and PIP Pり. Therefore

2D small rotation angles Aゆand AO are measured by
Eqs. (23) and (28). FeedbackControllers 1 and 2 are

used in Interferometers 1 and 2, respectively, to elim-
mate mechanical vibrations.

5

0

0

0

0

0
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Fig. 7. Measurement results oferrorsEユ　and Eユ　at A L = 10

and 60 arcsec, respectively.

7. Experimental Results

Experiments were performed with the experimental

setup in Fig. 6. In the experiments the related pa-

rameterswereSx -S2 - 1.5mm,エ　-y0 - 750jxm,
l

zq　- 120mm,andz。〝- 118mmatcj>- 1-and9 -

5-. The 2D small rotation angles, △¢ and A6, were

measured by our method and with an autocollimator.

The results with our method are expressed as A¢m

and A6〝　The results with the autocollimator are

expressed asAc♭ and A6C. Thevalues ofA<f)m - A¢c

and A6m - AOc correspond to errors EA and Eユ0,

respectively. The initial position of the object is in-

dicated by the black dot at A<|>c - 0, A8C - 0, A<t>m -

0, andA6C - 0 inFigs. 7-10.

A. Measurement Errors

Measurement errors E叫and 」AO are given theoret-

ically by Eqs. (49) and (50). Random errors e叫and

EAB are estimated to be within ±0.6 arcsec. Errors e2

and e2 are given by Eqs. (39) and (40). We investi-
gate how the errors in the measurement appear and

if the experimental results agree with the theoretical

results. Figure 7(a) shows that rotation angle A¢
within ±10 arcsec was measured at intervals of 5

arcsec in the conditions of A0,. - 10 and 60 arcsec.

When A8t. - 10 arcsec, error EA<i) was random and
within ±0.6 arcsec. This is due to random error eA<i>-

When A8_ - 60 arcsec, error Eユ^ was from -1.3 to
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Fig. 8. Measurementresults oferrorsEユ　andEふatふI　- 10

and 60 arcsec, respectively.

-0.1arcsec.Thiserrorhasaminusbiasof-0.7,

whichisduetothelargevalueof△O.Thiserroris

consideredtobeevFromEq.(39)thevalueof/?,xis

positiveandestimatedtobe-0.01.Sothevalueof

8xisestimatedtobe-1-fromFig.5(a).InFig.5the

curvesat(f>-0-,9-0-areusedwhenweestimate
thevaluesof5tand52inconditions♭-i-,e-5-.

RotationangleAOwassimultaneouslymeasuredfor

A-10and60arcsecasshowninFig.7(b).AtA6C

-10arcsec,errorEユwasrandomandwithin±0.6

arcsec.Thisisfromrandomerrore>(.AtA0,.-60
Alt-
arcsec,errorEユwasstillrandomandalmostwithin

±0.6arcsec.ErrorEユhasnoeffectonAfl.From

Eq.(40)thevalueofR2l-1isestimatedtobealmost

チero.WeestimatefromFig.5(c)thatthevalueof82

iswithin±lo.

AsshowninFig.8(a)thesmallrotationangleAO

within±10arcsecwasmeasuredatintervalsof5

arcsecinconditionsofAe-10and60arcsec.

WhenA<j¥.-10arcsec,errorEA()inthemeasurement

wasfromrandomerrorJA(i).WhenA6C-60arcsec,

errorEユwasfrom-1.5t0-0.2arcsec.Theminus

biasof-0.85intheerroriscausedfromthelarge

valueofユ<S>.Thiserrorisconsideredtobee2.From

Eq.(40)R22ispositiveandestimatedtobe-0.01.

Soweestimate付omFig.5(d)thatthevalueof82is

-1-.Thisvalueof52agreeswiththeresultsfrom
thevalueofi?2i-1-Figure8(b)showsthatthe

smallrotationangle上中wassimultaneouslymea-
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Fig. 9. Measurement results of2D small rotation angles叫,ユ0
1vithin -10 arcsec.

sured by our method for A4>c - 10 and 60 arcsec.

When AcJ)(. - 10 arcsec, error E^ was random and
within ±0.6 arcsec. This is due to random error eユd,・

When ASr - 60 arcsec, error EAi> was still random
and almost within ±0.6 arcsec. It is clear that the

large value ofAcj> does not affect error Eユ<!>・　We es-

timate from Eq. (39) that the value ofR12 - 1 is

almost zero and from Fig. 5(b) that the value of8x is

from -1- to 1-. This value of8x agrees with the

result from the values ofRii-

From these experimental results we obtain the val-

ues of8x and 82 by using the results of our theoretical

0　　　つ　　　　　　　　　　　　　　10

L(mm)

Fig. 10. Measurement results of2D small rotation angles from

displacements of a stage.



analysis. It is shown that8j and 5りcan be adjusted

to be less than 1-, and the theoretical analysis is

supported by the experimental results. The config-

urationsofthesetupwere(j> - 10, e - 5C,and5x - 52

- 1o andwehaveR12 -　　R2l -　　Oandi?ll 2=

R22宗ご0.01 inEqs. (39)and(40). Thenerrorex inthe

measurement ofA(|> is almost equal t0 -0.01AB, and

error eゥin the measurement ofAO is almost equal to

-0.01A<j>. Therefore random errors eAl!> and eユ　are

dominant when values ofユ(b and AB are within ±10

arcsec. When Acj> and上6 are large, ex and e2 produce
bias values in the measurement.

B. Measurement of 2D Small Rotation Angles

We gave the 2D small rotation angles, A((> and AO, at
intervals of-5 arcsec within ±10 arcsec. The mea-

surement results are shown in Fig. 9. We can see

that measurement errors i?A(b and Eユ　are within

±0.6 arcsec, and the errors caused from el and e2 are

almost zero. The measurement range of the 2D

small rotation angles was almost丘・om -10 to 10

arcmin, which is expected from Eqs. (43) and (44).

In this range the maximum values of errors Eァti> and

Eユe were ±0.1 arcmin, which are from errors Ej and

e2. The results agree with the conclusions in Sub-
section 7.A.

When a stage with a mirror is moved by a micro-

meter, displacement makes the stage rotate. It is

important to investigate how the stage rotates

through displacements. We applied our method to

measuring 2D small rotation angles of the mirror

attached to the stage. An axis of the rotation angle,

ユ6, to be measured was perpendicular to the surface

of the stage. Another axis of the rotation angle, △中,

was perpendicular both to the axis of the rotation

angle, A8, and to the direction of the displacement.

The measurement results are shown in Fig. 10. In

the measurement, the stage was moved at intervals

ofO.5 mm in a range oflO mm, and rotations of the
mirrol were measured at each interval. The results

show that the displacement makes the stage rotate

around the two axes between 4.7 and -5.2 arcsec in

two dimensions.

8. Cone山sions

A method of measuring a one-dimensional small ro-

tation angle with a PIP has been developed for mea-

suring 2D small rotation angles. By analyzing the

PIP reflected by an optical surface, we obtained the

phase difference α of the re月ected PIP between the

two phase detection points A and B. From the rela-

tionships between phase difference α and the 2D

small rotation angles of A6 and上中, we determined

two kinds of PIP to measure simultaneously the 2D

small rotation angles. We analyzed errors ex and e2

caused in the nonideal con6guration where the re-

quired alignments between the two PIP's and the

object are not satisfied. By using a feedback control

system in sinusoidal phase-modulating interferome-

try, we reduced random errors eA and eユ。 caused by

mechanical vibration. In experiments the measure-

ment errors wer・e investigated in detail. It was

found from the experimental results and the theoret-

ical analysis that the inclination angles of the two

PIP's were adjusted to be -10　We reached the fol-

lowingconclusions: (1) Errorex inthe measurement

ofユ(}) is almost equal t0 -0.OIAO, and error e2 in the

measurementofAH is almost equal to -0.01A巾. (2)

For small rotation angles of less than a few tens of

arcseconds, random errors 」ふh and 」ユ　whose stan-

dard deviations are 0.6 arcsec are dominant, and, for

the large rotation angles, errors ex and e2 produce
bias values in the measured values. The theoretical

analysis was supported by the experimental results.

With the advantages of a high space resolution of
1.5 × 1.5 mm and a high sensitivity of4.9 mrad/

arcsec, the method is suitable for measuring 2D small

rotation angles of the object, which has a small sur-

face.

Appendix A: Derivation of Eqs. (31) and (32)

We obtain an expression for the normal unit vector n
in the o'-x'yz′ system:

′

nx -cosβcos2(0 +A9)cos26 - [cos7sin2(ij>+A<|>)

- cos β cos 2((♭ + A(いsin 2(6 + AO)]sin 29,

ny- cos7cos2((|)ユ<}))+COS βsin2(cj>+Ad,)

× sin 2(0+AO),

71,蝣- -COSβcos2(0+A6)sin28 -[cos・ysin2

× (<i> + Ad>) - cos βcos 2(c♭ +A(J))sin 2

× (o + △6)]cos 26. (Al)

Onsubstitutingβ - 900 - 51?7 - 5xintoEq. (Al),we
obtain

nx - sinbl cos2(6 +ユ6)cos26

- [cos hx sin 2(cJ> + Acf>) - sin 8x cos 2(c{> + A<fr)

× sin2(9 +ユ6)]sin26,

ny - cos5[ cos 2(i¥> + &<&) + sin b{ sin2((|> + A¢)

×sin2(0+AB),

n,'- -sin^cos2(0+ A9)sin2fl

- [cos8x sin 2(<f> + Ac})) - sin6j

x cos2(<t> + A小sin2(B + AB)]cos 26.　(A2)

Using approximations for a trigonometric function

such as sin 2AO ≡ 2A9, sin 2Acj> ≡ 2Ac}>, cos 2A6 ≡ 1,

cos 2Acb ≡ 1 and neglecting the terms that contain A8

× A(}), we have

nェ-sinbxcos-29 - 2上6sinァ!sin29cos26

- cos5j sin2(b sin2e - 2A<bcos8j cos2(j> sm26

sin 8x sin 20(sm 28 cos 2<J>

- 2A(}) sin 2(b sin 28 + 2AB cos 20 cos 2cb).

(A3a)
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ny - cos Sjlcos 2cb - 2Ac}> sin 2(わ)

+ sinS^sin 26sin 26 + 2Acb cos 26sin28

+ 2A6cos 26 sin 26),

nヱ・ニーsin&!cos26sin26 + 2A6sin8xsin-26

- cos 20 cos 8,(sm 2cj) + 2Acb cos 2cb)

+ cos 28 sin djlcos 2cf> sin 26

- 2A¢ sin 2<}> sin 26 + 2AB cos 26 cos 2<J>).

(A3b)

Substituting Eqs. (A3) into Eq. (15) and assuming

that A6 - A<|) - 0, the expression forc?0(p, 7, 6, <&) is
written as

do(β, 7, 8, <J>) -jco'[sin 81(l - 2 sin2 26 sin2 <J>)

- cos8i sin2cb sin29]

+;y。(cos Si cos 26

+ sin 5x sin 2cb sill 26)

+ 2z。′ cos 20 sin cj>(sin b^ sin 26 sin c{>

+ cos 8t cos <b).　　　　　　　(A4)

Theexpression ofd{β, y, e, 4>, AO, Aめ) - do(β, 7, e, <l>)

is given by

d(β,7, 6, 6, A6, Acj>) -dQ(β, y, e, cj>)

- 2AO sin 81[2 cos 26 sin fy(z。′'sin d♭ +yQ cos cb)

- Z。']十2△4>[sin 5j sin 28(zO′'sin 2d>

+y。 cos 2c}>) + cos hi(zu" cos 2cj> -yQ sin 2<j>)J,

(A5)

wherez。'cos 26 - x。′ sin20 - 2。〝.

Substituting Eq. (A5) into Eq. (21), we have

A4>m - -AO sin5j
[

′

Z0- 2 cos 26 sin cj>

Zo

・ sin4>+芸cos¢)]

Acj) sin 8t sin 26 sin 2cj> H-- cos 2(j)

+cos81 00324--2*
Whenβ - 82,7 - 90c - 82,wereplacesin5randcos

hl in Eq. (A5) with cos 82 and sin 52, respectively, and
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we have

d(β,7,9,<b、AO,Acj>) -do(β,7, 8, 6)

- 2A6 cos 8,[2 cos 2B sin cb(lo′′ sin cj) +y。 cos <j>)

- 20'J + 2A<|>[cos 8, sin 2Q(zo′'sin 26

+y。 cos 2cb) + sin 8.2(z。〝 cos 2(j> -y。 sin 2cf>)].

(A7)

On substituting Eq. (A7) into Eq. (28), we have

2[
A9m - A6cosb。

zl>'

l

Zn

- A(ト

I

1-2cos26sin㊥

sin<J> + -- cos 4>I

2n

cos 5りsin 20

+sin5。

(
- sin 2<t> H cos
/　　　　　　　　　　　　　　　　　　　　　　/

*O ZQ

2o
I-cos 2cト些sin
Zo/　　　　zo/

Equations (A6) and (A8) are Eqs. (31) and (32), re-

spectively.
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