Measurement of two-dimensional small rotation
angles by using orthogonal parallel interference

patterns

Xiaoli Dai, Osami Sasaki, John E. Greivenkamp, and Takamasa Suzuki

Based on measuring one-dimensional small rotation angles by using a parallel interference pattern (PIP),
a method for measuring two-dimensional (2D) small rotation angles by using two different PIP’s that are
orthogonal to each other is proposed. We simultaneously measure the 2D small rotation angles A0 and
Ad by detecting the phases of the orthogonal PIP’s reflected by an object at two detection points. A
sensitivity of 4.9 mrad/arcsec and a spatial resolution of 1.5 X 1.5 mm® are achicved in the measurement.
Theoretical analysis and experimental results show that error ¢, in the measurement of A¢ is almost
equal to —0.01A0 and error &, in the measurement of A0 is almost equal to —0.01Aé.  For small rotation
angles of less than a few tens of arcseconds, the random errors whose standard deviations are 0.6 arcsec
are dominant. © 1996 Optical Society of America
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1. Introduction

When two collimated laser beams intersect a small
angle, a parallel interference pattern (PIP) occurs.
In our previous paper,! we described a method for
measuring one-dimensional small rotation angles by
using a PIP. In this paper, we develop a method for
measuring simultaneously two-dimensional (2D)
small rotation angles by using two different PIP’s
that are orthogonal to each other. The methods that
use a Michelson interferometer2-+ and an autocolli-
mator56 can also be used to measure 2D small rota-
tion angles. However, as described in our previous
paper,! the low spatial resolution of these methods
cannot be avoided. The methods using a Michelson
interferometer have a trade-off between spatial reso-
lution and angular sensitivity. The method, by us-
ing a PIP, does not have this trade-off. The spatial
resolution is determined by the period space of the
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PIP. The sensitivity depends on the period space of
the PIP and the positions of the two detection points
at which the phases of the PIP are detected. We can
obtain a high sensitivity by adjusting the positions of
the two detection points. So, it is significant that the
method, by using a PIP, is developed to measure 2D
small rotation angles. A sensitivity of 4.9 mrad/
arcsec and a spatial resolution of 1.5 X 1.5 mm? are
achieved in our measurement.

In Section 2 we generally analyze a parallel pattern
reflected by an object to obtain the phase changes on
the two detection points resulting from the rotation of
the object. From the results in Section 2, we deter-
mine two kinds of incident PIP to measure indepen-
dently two angles of 2D rotation in Section 3. When
the necessary alignments of the incident PIP’s and
the object given in Section 3 are not done exactly, we
have measurement errors. We analyze these errors
in detail in Section 4. We describe the characteris-
tics of our method in Section 5. In Section 6 we
present an experimental setup in which we use sinu-
soidal phase-modulating interferometry and a feed-
back control system to eliminate the effects of
mechanical vibrations. In Section 7 we examine
how the errors appear in the measurement of 2D
rotation angles and show that the theoretical analy-
sis of our method is supported by experimental re-
sults.
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Fig. 1. Reflection of a parallel interference pattern.

2. Reflection of a Parallel interference Pattern

As shown in Fig. 1, a PIP occurs when two collimated
laser beams intersect a small angle . The PIP con-
sists of some alternating dark and bright planes be-
tween which the phase changes from 0 to 2w. We
define an equiphase plane as the plane on which the
phases of the PIP are constant. The equiphase
plane of the PIP is called the EPP in this paper. We
have an orthogonal coordinate system o-xyz. The
propagation direction of the incident PIP is the bisec-
tor of angle m and parallels the z axis. The direction
of the EPP in the incident PIP is represented by the
normal unit vector 7i,(cos B, cos v, cos 90°). The x—z
and y-z planes denoted by E and F, respectively, are
regarded as two reference planes for the measure-
ment. A plane surface of the object is represented by
its normal vector 9(8, ). The 6 and ¢ are the angles
between the z axis and the projections of the normal
vector (8, ¢) on planes E and F, respectively. The
surface of the object reflects the incident PIP. The
direction of the EPP in the reflected PIP is repre-
sented by its normal unit vector #(n,., n,, n_). The
o'—x'yz’ is another orthogonal coordinate system in
which the angle between the x and x" axesis 26. The
normal vector A is determined by the normal vector
unit A; and the normal vector 9(6, &).

First, let us derive the expression of ri(n,., n,, n_).
When 6 = ¢ = 0 the normal unit vector 72, of the EPP
in the reflected PIP is equal to the normal unit vector
n; of the EPP in the incident PIP. As shown in Fig.
2(a), A, is given by

ﬁO = {n'O.u n'()y' nO:}- (1)
where

ng, = cos B, g, = €OS Y, ng. =cos90°=0. (2)
When 6 # 0. angle 8 of the object makes the EPP in
the reflected PIP rotate by angle 26 around the y axis.
This means that vector n,, rotates by angle 26
around the y axis in the x—z plane and vector n, does

not change, as shown in Fig. 2(b). The normal unit
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N2y = Ny = Noy

(c)
Fig. 2. Change in the unit normal vector i of the reflected
equiphase plane. (a) Unit normal vector i, at 6=¢ = 0. (b)
Rotation of vector 7, by angle 6 of the object. (c) Rotation of vector
i, by angle ¢ of the object.

vector 7, changes to

Ay =A{nye, ny, nysh, (3)
where
n,. = 0. 4)

In the coordinate system o-xyz, 7, is expressed as

n, = cos B, n,, = cosv,

ﬁ"l = {any n'ly- n‘.’z}~ (3)
where

n,, = n, cos 28, Ny, = Ny, Na. = Ny SIN 20, (6)
When ¢ # 0, angle ¢ of the object makes the EPP in
the reflected pattern rotate by angle 2¢ around the x
axis. This means that vectors n,, and n,, rotate by
angle 2¢ around the x axis in the y-z plane and the
vector n,, does not change, as shown in Fig. 2(c).
Thus the normal unit vector 7, changes to

fiz = {ng,, Ny, Ny}, (7)
where
Nge = Ny, ng, = n,, cos2d + n,, sin 2¢,
ng. = —ny, sin 2é + n.. cos 2é. (8)

Substituting Egs. (4) and (6) into Egs. (8), we have
n,. = cos B cos 26,
ny, = cos vy cos 2¢ + cos B sin 26 sin 2¢,
n;, = —cos y sin 2d + cos B cos 2 sin 28.  (9)



Making a coordinate transformation from the o-xyz
system to the o'—x"yz’ system for the expression of 1.
we obtain the expression of the normal unit vector 7
in the o'-x'yz’ system as follows:

n=A{ng n, n., (10)
where
n. = ng cos 20 + ng. sin 20, n, = n,
n. = —ny sin 26 + nj. cos 28. (11)

The two points, A(0, 0, 0) and B(x,'. vo. —2z¢'). in the
o'—x'yz’ system are used to detect the phases of the
reflected PIP. The distance between the two EPP’s
that contain points A and B, respectively, is denoted
by d,. By defining vector AB that connects points A
and B, we have

dO(B! Y ev d)) =n ’AB = n.r'x(), + n)y(] - n:'z[)" (12)

The phase difference between the two EPP’s is ex-
pressed as ap = |a, — ap| where o, and ag are the
phases detected at the A and B points, respectively.
We obtain another expression for d, as

d()(B’ Y, 97 (b) = ;Uﬁ Sv (13)

where S is the period of the parallel interference
pattern. S is given by

A

2 sin(n/2)’ b
where \ is the wavelength of the laser.

A small rotation of the surface in two dimensions
causes the normal vector 0(0, &) to change to 6(6 + A,
¢ + Ad). The A0 and Ad are 2D small rotation
angles of the object around the x and the y axes,
respectively. Substituting 6 + A6 and ¢ + Ad for 6
and ¢, respectively, in Eq. (9) and performing the
coordinate transformation given by Eq. (11), we ob-
tain the expression of the normal unit vector 71 in the
o'-x'yz' system after the 2D small rotation of the
object. This expression is given by Eq. (Al). The
distance between the two EPP’s containing A and B
points, respectively, after the 2D small rotation is
written as

dB. v, 0, b, A0, Ad) = n- AB. (15)

The phase difference o detected at A and B is ex-
pressed as a = |o, — oy, Wwhere «, and «, are the
phases detected at A and B, respectively, after the 2D
small rotation of the object. We obtain another ex-
pression for d as

dB, v, 6, b, A8, Ad) = ~ - S. (16)
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Fig. 3. ldeal configuration for measuring small rotation angle Ad.

From Egs. (13) and (16), we have

A
d(B, vy, 6, b, A0, Ab) — dy(B, v, 0, db) = ; S, amn
s

where
Aa = a — ay. (18)

Equation (17) shows the relationship of Aa, A8, and
Ad. Parameters B, v, 0, ¢ are related to the mea-
surement configuration. If we select appropriate
values for the parameters, the value of Af or Ad can
be obtained from Aa. In Section 3 we discuss these
appropriate values.

3. Configurations for the Measurement of 2D Rotation
Angles

We are interested in how to measure Ad or A6 inde-
pendently. As shown in Fig. 3, when & = 0 and the
EPP’s in the incident PIP parallel plane E, that is, B
= 90° and v = 0, by using the approximations for a
trigonometric function such as sin 218 = 2A6, sin 2Ad
= 2A¢, cos 240 = 1, cos 2A¢ = 1 in Egs. (12) and (15),
respectively. we have

do = Yo (19)
d =y, + 2Ad(z, cos 26 — x,’ sin 28). (20)

Equations (19) and (20) are also found in Egs. (A4)
and (A5) in the conditions of & = 0 and 8, = 0. From
Egs. (19) and (20), Ad is given by

d—do

A= (21
P ey )

where
2o = (25 cos 20 — x,’ sin 20). (22)
Substituting Eq. (17) into Eq. (21), we express A as

A
Ab= * s (23)

”

<o
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Ideal configuration for measuring small rotation angle A#.

It is clear that the measurement configuration of Fig.
3 provides an independent measurement of A with-
out any effect from A8. It is obvious that we can
independently measure A6 without any effect from
Ad by using the measurement configuration where
the EPP in the incident PIP parallels the F plane and
0 =0, & = 0 in vector 0(9, $). However, the two
measurement configurations cannot be combined be-
cause vector 0(9, &) is different in the two configura-
tions. To measure simultaneously the 2D small
rotation angles, Ad and A8, we construct the config-
uration for measuring A8 shown in Fig. 4 with the
same phase-detecting points as those in Fig. 3. In
the configuration the EPP’s in the incident PIP par-
allel plane F, that is, 3 = 0 andy = 90°. Inthe same
way that we obtain Egs. (19) and (20), we have

dy =%, (24)

d =x," — 2z,’A0 + 2y,A¢d sin 28. (25)

Equations (24) and (25) are also found in Eqgs. (A7) in
the conditions of & = 0, 8, = 0. Substituting Egs.
(24) into (25). we have

d - do
Ab=—- — —+ o, 26)
92, ¢, (
where
¢ = (y,Ad sin 20)/z, . 27

When z,’ >> y, and 9 are small. ¢ is small enough to
be neglected in Eq. (27). For example, when z," =
120 mm, y, = 1 mm, 6 = 5°, and Ad = 60 arcsec, we
have ¢ = 0.087 arcsec. Substituting Eq. (17) into
Eq. (26) and neglecting ¢, we give the expression
of A6 by

(28)

Therefore we combine the two measurement config-
urations in Figs. 3 and 4. Two kinds of Aas of the
reflected orthogonal PIP’s are detected. and the 2D
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small rotation angles are simultaneously measured
by Egs. (23) and (28).

4. Nonideal Measurement Configurations

We refer to the measurement configuration in Fig. 3
or 4 as an ideal measurement configuration in which
the EPP in the incident PIP is absolutely parallel to
plane E or F and & = 0 in vector (0, ¢). But in
practice measurements, it is difficult to obtain abso-
lute alignments of the EPP’s and the object. Now
angle ¢ is not zero. The normal unit vector #; of the
EPP in the incident PIP in Fig. 1 is expressed as

B =90° -8,

where angle 8, is the inclination angle of the EPP in
Fig. 3. Similarly, the normal unit vector #; of the
EPP in the incident PIP in Fig. 1 is expressed as

B =9d.,

where angle 3, is the inclination angle of the EPP in
Fig. 4. We refer to these measurement configura-
tions as nonideal measurement configurations. In
the nonideal measurement configurations, we mea-
sure two kinds of Aas and obtain the 2D rotation
angles from Egs. (23) and (28). These measured ro-
tation angles are denoted by Ad,, and A8,,. Deriva-

Y =8, (29)

v =90° — 8., (30)

tions of Ad,,, and A0, are given in Appendix A. They
are expressed as follows:
Ad’m = _R“A(’) + Rle‘b\ (31)
A8, = Ry;A0 — RyuAd, (32)

where

. = . . Yo l
R,, = sin 81[~,, — 2 cos 20 sin ¢(sm b + oy cos (b” ,

20 0
(33)
. . . Yo
R,, = sin 8, sin 26(s1n 2 + ~= cos 2d>)
' 2o
Yo .
+ cos Bl(cos 2d — — sin 2¢) . (34)
29
. zy" .
R, = cos 83[1 — 2 cos 20 sin d)(——, sin &
20
+ yfol cos d))] , (35)
2o
R,, = [cos 3, sin 28(20, sin 2¢ + 2’2, cos 24)>
2p )
+sin ag(z‘l, cos 26 ~ 22 sin 2¢)} . (36)
29 2o

If we know the values of R, R;5, Rs;, and Ry,, we
can obtain the actual angles Ad and A8 from the
measured values Ad,, and A, by solving Egs. (31)
and (32). Coefficients R,,, R,2, R5;. and Ry, contain
the values of 8, 8,, 8, &, Xy, o, and z5'. It is im-
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possible to know the values of 3, and 3, exactly.
Thus it is difficult to obtain the exact values of R, ,,
R.5, Ry, and R,,. However, if angles 8;, 3,, 8, and ¢
are within £5° the differences between the measured
rotation angles and the actual ones are less than 10%.

Ad,, and A@,, are expressed as
Ad,, = Ad + ¢, (37)
AB,, = AB + ¢, (38)
where
g = (R, — 1Ab — R, A6, (39)

£~_: = (Rﬂ_gl - I)A(') - Rzg&(b. (40)

The €, and &, terms are regarded as errors caused by
nonideal measurement configurations.

Figure 5 shows coefficients R,,, R;» — 1, Ry; — 1,
and R,, versus angles 8, and 3, for various values of
8 and b at x;' = yo = 1 mm, and z,” = 120 mm.
Angles 6 and ¢ are within +5°. When angles 3, and
3, approach zero, the coefficients are close to zero
except for R,» — 1 at nonzero values of 6 and ¢. The

0.00

=9 =0
001 $7F 9=
o
% 002
-0.034
-6 -4 20 2 4 6
01 (degree)
(b)
0.15
o0s| $=rPB==5
o 0.004
-0.05

-0.15 $=F5° 0 =25

6 4 2 0 2 4 6
0> (degree)

(d)

(a) Ratio R, versus angles §,,0, &. (b) Ratio R, versus angles

maximum value of R,, — 1 is slightly further from §,
= 0 because of the first term in Eq. (34). The values
of R, — 1 and R,, — 1 are within —0.017 when
angles 8, and 3, are within *1°. The value of R, is
almost constant for the change in 6, ¢ because the
second term in Eq. (33) is very small. R,, is within
+0.012 when 8, is within =1°. R,, depends on the
values of 6 and ¢. R,, is within *0.04 when 3, is
within =1°. R, — 1,Rs; — 1,and Ry, at & = 1°, 6
= 5° are very close to their values at ¢ = 0°,6 = 0° but
are very different from them at & = 5°, 0 = 5°. This
indicates that R, — 1, R,; — 1, and R, are more
sensitive to ¢ than 6.

5. Characteristics of the Method

First, we discuss the angular sensitivity that is de-
fined as the ratio of Aa to Ad or A8. From Eq. (23)
the sensitivity of Ad is written as

S(,l = 4‘“’20”/31, (41)

where S, is the period space of PIP 1, which is used
to measure angle A¢. From Eq. (28) we have the
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sensitivity of —\@:
S.2 = 4wz, /8.,

where S, is the period space of PIP 2, which is used
to measure angle Ad. When S, = S, = 1.5 mm, z,’
= 120 mm, and z," = 118 mm, a high angular sen-
sitivity of ~4.9 mrad/arcsec is obtained from Egs.
(41) and (42) for the measurement of Ad or A6.

Second, we consider the measurement ranges.
Phase difference « in Eq. (18) changes from 0 to 2=.
When phase difference « is equal to w in Eq. (18),
from Egs. (23) and (28) we obtain the same measure-
ment range for the positive and negative small rota-
tion angles:

(42)

1
Ad| = — S, (43)
4|20 |

|AB| =

S,.

ajz] > (44)
When S| = S, = 1.5 mm, z,’ = 120 mm, z," = 118
mm, the measurement range of +10 arcmin for Ad or
Af is obtained from Eqs. (43) and (44).

Third, let us consider the spatial resolution of the
method. Because PIP 1 and PIP 2 are orthogonal to
each other, the spatial resolution of the method is
given as

SR=8,x8.. (45)

When §, = S, = 1.5 mm, a spatial resolution of 1.5
X 1.5 mm? is obtained.

Fourth, in the practice measurement, the mechan-
ical vibrations cause the random errors in the phase
detection. Standard deviations of phase differences
oo and a in the measurement of angle A are donated
by o, (Ad) and o,(Ad), respectively. The standard
deviations in the measurement of angle A6 are
0, (26) and 0,(A0). We assume that

Ooo(Ad) = 0,(Ad) = 0, (20) = 0,(A8) = 0.  (46)
The random errors in the measurements of angles A}
and A6 are expressed by e,, and e,,, respectively.
From Eqgs. (23) and (28) the standard deviations o,
and 0,4 of the random errors in the measurement of
angles A¢ and A8, respectively, are given by

Tap = _\“'20 S, (47)
47"20"
_ \’50’

Tag = ) (48)
41720

When the feedback control systems are used to elim-
inate mechanical vibrations, ¢ decreases greatly.”
In experiments, o decreases to ~2 mrad from 0.1 rad
by feedback controllers. From Egs. (47) and (48),
U, and g,, are ~0.58 arcsec. Summing up the er-
rors caused from the nonideal measurement config-
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urations and the phase detections, we have

E,, =g t+ey, (49)

E.\n = €y + 4. (50)

E,, and E,, are errors in the measurement of 2D
small rotation angles Ad and A8, respectively, and
show us how accurately we can measure 2D small
rotation angles Ad and A6 by Egs. (23) and (28).

6. Experimental Setup

Figure 6 shows an experimental setup for measuring
2D small rotation angles Ad and A0. The object is an
optical surface. Two Twyman-Green-type inter-
ferometers are used to generate two sets of PIP’s that
are orthogonal to each other. The wavelength of LD,
is 780 nm (i = 1,2). The PIP P, from Interferometer
1 is parallel to the plane of the figure. The plane of
the figure is plane E. PIP P, from Interferometer 2
is perpendicular to the plane of the figure. The an-
gle between the two laser beams from interferometer
i is m; and the period of PIP P, is S;, respectively.
The beam splitter, BS 3, is used to make patterns P,
and P, overlap. They are incident on the optical
surface whose normal vector has small angles 6 and
¢ of less than 5°.

If we remove the optical surface, the two beams
from BS 1 or BS 2 separate at a position far from the



optical surface and are observed as two spots on a
plane perpendicular to plane E. The distance be-
tween the centers of the two spots from BS 1 indicates
the value of angle m,, and the distance between the
centers of two spots along a line parallel to plane E
indicates a value of misalignment angle 3, for PIP P,.
In the same way we know the value of angle n, and
the value of the misalignment angle 3, for PIP P,.
By the positions of two pairs spots, we adjust angles
T, Mg, By, dy.

Because distance d, between the two detection
points, A and B, is less than space S, two fibers stuck
together are used to detect the interference signals at
the two points. The outsider diameters of the fibers
are ~1 mm, and their core diameters are 50 wm.
The optical fibers are placed parallel to plane E and
along the propagation direction of reflected laser
beams to receive the light at points A and B. Thus
the direction of the optical fibers is along the z’ axis as
shown in Fig. 3. The value of angle 6 is determined
by the angle between the optical fibers and the prop-
agation direction of the incident PIP. The value of
angle 0 is determined. The distance between points
A and B along the optical fibers corresponds to the
value of z,’, and the distance between two optical
fibers along axes x’ and y corresponds to the values of
xo' and y,. respectively. In our experiment the pa-
rameters are x," = y, = 0.75 mm, z," = 120 mm, z,"
= 118 mm, and 9 = 5°.

Two sinusoidal phase-modulating laser-diode in-
terferometers are used. To distinguish the interfer-
ence signals from Interferometers 1 and 2, the
injection currents of two laser diodes are modulated
with the sinusoidal wave signals of z; cos w;¢ and z,
cos wyt, respectively.® In our experiment, w,/2w and
wy/2w are 8 and 1 kHz, respectively. The two inter-
ference signals detected at points A and B are ex-
pressed as

S, = Sialcos(z, cos w,t + ay)]

+ S, 4[cos(zy COS wot + s 4)], (51)
Sp = S,5[cos(z, cos w,t + ayp)]
+ S.,p[cos(z5 cos wot + aspg)]. (52)

The two optical fibers are connected with two photo-
diodes, PD1 and PD2. Interference signals S, and
Sp are sent into a computer through an analog-to-
digital converter. With the technique of sinusoidal
phase-modulating interferometry the values of
phases w4, a;5 (i = 1, 2) are detected. Thus we
obtain two kinds of phase difference ays for PIP P,
and PIP P,. After the object rotates in two dimen-
sions in the same way we also obtain two kinds of
phase difference as for PIP P, and PIPP,. Therefore
2D small rotation angles Ad and A6 are measured by
Eqgs. (23) and (28). Feedback Controllers 1 and 2 are
used in Interferometers 1 and 2, respectively, to elim-
inate mechanical vibrations.
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Fig. 7. Measurement results of errors E,, and E,, at A6, = 10
and 60 arcsec, respectively.

7. Experimental Results

Experiments were performed with the experimental
setup in Fig. 6. In the experiments the related pa-
rameters were S; = S, = 1.5 mm, x,' =y, = 750 pm,
zo' = 120 mm, and z," = 118 mm at ¢ = 1°and § =
5°. The 2D small rotation angles, Ad and A8, were
measured by our method and with an autocollimator.
The results with our method are expressed as Ad,,
and A8,,. The results with the autocollimator are
expressed as Ad, and A8,. The values of Ad,, — Ad,
and A8,, — A8, correspond to errors E,, and E,,,
respectively. The initial position of the object is in-
dicated by the black dot at A, = 0, A6, = 0, Ad,, =
0, and A8, = 0 in Figs. 7-10.

A. Measurement Errors

Measurement errors E,, and E, are given theoret-
ically by Egs. (49) and (50). Random errors €,, and
€,y are estimated to be within =0.6 arcsec. Errorse,
and €, are given by Egs. (39) and (40). We investi-
gate how the errors in the measurement appear and
if the experimental results agree with the theoretical
results. Figure 7(a) shows that rotation angle A
within =10 arcsec was measured at intervals of 5
arcsec in the conditions of A8, = 10 and 60 arcsec.
When A6, = 10 arcsec, error E,, was random and
within +0.6 arcsec. This is due to random error &,
When A8, = 60 arcsec, error E,,, was from —1.3 to

1 October 1996 / Vol. 35, No. 28 / APPLIED OPTICS 5663
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—0.1 arcsec. This error has a minus bias of —0.7,
which is due to the large value of A8. This error is
considered tobeg,. From Eq. (39) the value of R, is
positive and estimated to be ~0.01. So the value of
8, is estimated to be ~1° from Fig. 5(a). In Fig. 5 the
curves at ¢ = 0° 6 = 0° are used when we estimate
the values of 3, and 3, in conditions ¢ = 1°, 8 = 5°.
Rotation angle A6 was simultaneously measured for
A6, = 10 and 60 arcsec as shown in Fig. 7(b). At A6,
= 10 arcsec, error E,, was random and within +0.6
arcsec. This is from random errore,,. At A6.= 60
arcsec, error E ,, was still random and almost within
+0.6 arcsec. Error E,, has no effect on A9. From
Eq. (40) the value of R,; — 1 is estimated to be almost
zero. We estimate from Fig. 5(c) that the value of 3,
is within *=1°.

As shown in Fig. 8(a) the small rotation angle A8
within *+10 arcsec was measured at intervals of 5
arcsec in conditions of Ad., = 10 and 60 arcsec.
When A, = 10 arcsec, error E, in the measurement
was from random error £,,. When Ad, = 60 arcsec,
error E,, was from —1.5 to —0.2 arcsec. The minus
bias of —0.85 in the error is caused from the large
value of Ad. This error is considered to be €,. From
Eq. (40) R,, is positive and estimated to be ~0.01.
So we estimate from Fig. 5(d) that the value of 3, is
~1°. This value of 8, agrees with the results from
the value of R,; — 1. Figure 8(b) shows that the
small rotation angle Ad was simultaneously mea-
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Fig. 9. Measurement results of 2D small rotation angles A, A0
within =10 arcsec.

sured by our method for Ad, = 10 and 60 arcsec.
When Ad. = 10 arcsec, error E,, was random and
within +0.6 arcsec. This is due to random error €4,
When Ad,. = 60 arcsec, error E,, was still random
and almost within *0.6 arcsec. It is clear that the
large value of A¢ does not affect error E,,. We es-
timate from Eq. (39) that the value of R, — 1 is
almost zero and from Fig. 5(b) that the value of §, is
from —1° to 1°. This value of 3, agrees with the
result from the values of R,;.

From these experimental results we obtain the val-
ues of 8, and 8, by using the results of our theoretical
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Fig. 10. Measurement results of 2D small rotation angles from
displacements of a stage.



analysis. It is shown that 3, and 3, can be adjusted
to be less than 1°, and the theoretical analysis is
supported by the experimental results. The config-
urations of the setup were ¢ = 1°,8 = 5°, and 8, = d,
~1°,and wehave R, —1~R,, ~1=0andR,;, =
R,,~0.011in Egs. (39) and (40). Then erroreg, in the
measurement of A¢ is almost equal to —0.01A6, and
error €, in the measurement of A6 is almost equal to
—0.01A¢. Therefore random errors €,,, and ¢,, are
dominant when values of Ad and A8 are within +10
arcsec. When Ad and A are large, €, and €, produce
bias values in the measurement.

B. Measurement of 2D Small Rotation Angles

We gave the 2D small rotation angles, Ad and A8, at
intervals of ~5 arcsec within *10 arcsec. The mea-
surement results are shown in Fig. 9. We can see
that measurement errors E,, and E,, are within
*+0.6 arcsec, and the errors caused from g, and ¢, are
almost zero. The measurement range of the 2D
small rotation angles was almost from —10 to 10
arcmin, which is expected from Egs. (43) and (44).
In this range the maximum values of errors E,, and
E ., were *0.1 arcmin, which are from errors €, and
€,. The results agree with the conclusions in Sub-
section 7.A.

When a stage with a mirror is moved by a micro-
meter, displacement makes the stage rotate. It is
important to investigate how the stage rotates
through displacements. We applied our method to
measuring 2D small rotation angles of the mirror
attached to the stage. An axis of the rotation angle,
A6, to be measured was perpendicular to the surface
of the stage. Another axis of the rotation angle, Ad,
was perpendicular both to the axis of the rotation
angle, A8, and to the direction of the displacement.
The measurement results are shown in Fig. 10. In
the measurement, the stage was moved at intervals
of 0.5 mm in a range of 10 mm, and rotations of the
mirror were measured at each interval. The results
show that the displacement makes the stage rotate
around the two axes between 4.7 and —5.2 arcsec in
two dimensions.

8. Conclusions

A method of measuring a one-dimensional small ro-
tation angle with a PIP has been developed for mea-
suring 2D small rotation angles. By analyzing the
PIP reflected by an optical surface, we obtained the
phase difference a of the reflected PIP between the
two phase detection points A and B. From the rela-
tionships between phase difference o and the 2D
small rotation angles of A and Ad, we determined
two kinds of PIP to measure simultaneously the 2D
small rotation angles. We analyzed errors €, and €,
caused in the nonideal configuration where the re-
quired alignments between the two PIP’s and the
object are not satisfied. By using a feedback control
system in sinusoidal phase-modulating interferome-

try, we reduced random errors €,,, and €,, caused by
mechanical vibration. In experiments the measure-
ment errors were investigated in detail. It was
found from the experimental results and the theoret-
ical analysis that the inclination angles of the two
PIP's were adjusted to be ~1°. We reached the fol-
lowing conclusions: (1) Error €, in the measurement
of A is almost equal to —0.01A6, and error €, in the
measurement of A8 is almost equal to —0.01Ad. (2)
For small rotation angles of less than a few tens of
arcseconds, random errors €,,, and €,, whose stan-
dard deviations are 0.6 arcsec are dominant, and, for
the large rotation angles, errors €, and €, produce
bias values in the measured values. The theoretical
analysis was supported by the experimental results.
With the advantages of a high space resolution of
1.5 X 1.5 mm? and a high sensitivity of 4.9 mrad/
arcsec, the method is suitable for measuring 2D small
rotation angles of the object, which has a small sur-
face.

Appendix A: Derivation of Eqgs. (31) and (32)

We obtain an expression for the normal unit vector 7
in the o'-x'yz' system:

n, = cos B cos 2(0 + Af)cos 26 — [cos v sin 2(¢ + Ad)
— cos B cos 2(b + Ad)sin 2(0 + A8)]sin 26,

n, = cos vy cos 2(¢b + Ad) + cos B sin 2(db + Ad)
X sin 2(6+A0),
n, = —cos B cos 2(6 + A0)sin 20 — [cos y sin 2

X (b + Ad) — cos B cos 2(p + Ad)sin 2
X (0 + A6)]cos 26. (A1)

On substituting B = 90° — §,, y = §, into Eq. (A1), we
obtain

n, = sin §, cos 2(6 + A6)cos 26
— [cos 8, sin 2(¢p + Ad) — sin ; cos 2(d + Ad)
X sin 2(8 + A6)]sin 26,

n, = cos 3, cos 2(p + Ad) + sin §, sin 2(d + Ad)
X sin 2(6 + A8),

n, = —sin 8, cos 2(6 + Af)sin 26
— [cos 8, sin 2(d + Ad) — sin §,;
X cos 2(¢p + Ad) sin 2(8 + A6)]cos 26. (A2)

Using approximations for a trigonometric function
such as sin 2A0 = 2A0, sin 2A¢ = 2Ad, cos 240 = 1,
cos 2A¢ = 1 and neglecting the terms that contain A8
X Ad, we have

n, = sin d, cos> 28 — 210 sin §, sin 26 cos 20
— cos 8, sin 2¢ sin 28 — 2Ad cos §, cos 2¢ sin 26
+ sin 8, sin 26(sin 20 cos 2¢

— 2Ad sin 2 sin 26 + 2A0 cos 260 cos 2¢),
(A3a)
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n, = cos 8,(cos 2¢ — 2A¢ sin 2¢)
+ sin 8,(sin 24 sin 26 + 2A¢ cos 2¢ sin 20
+ 2A6 cos 20 sin 2¢),

n, = —sin 3, cos 20 sin 26 + 2A0 sin 3, sin” 20
— cos 26 cos 8,(sin 2¢ + 2Ad cos 2d)
+ cos 26 sin d,(cos 2¢ sin 26

— 2A¢ sin 2¢ sin 20 + 2A60 cos 26 cos 2d).
(A3b)

Substituting Egs. (A3) into Eq. (15) and assuming
that A6 = Ad = 0, the expression for d,(B, v, 8, d) is
written as

do(B, v, 8, &) = x,4'[sin 8,(1 — 2 sin® 26 sin® ¢)
— cos §; sin 2¢ sin 26]
+ yolcos 8, cos 26
+ sin 9, sin 2¢ sin 26)
+ 2z," cos 28 sin ¢(sin 3, sin 20 sin ¢
+ cos 8, cos ¢). (A4)
The expression of d(B, v, 0, &, A8, Ad) — dy(B, v, 8, d)
is given by
d(B, v, 8, b, A8, Ad) ~ dofB, v, b, ¢)
= 270 sin §,[2 cos 26 sin ¢(z," sin & + y, cos b)
- zo'] + 2Ad([sin 3, sin 26(z,” sin 2¢
+ yo cos 2d) + cos 8,(z," cos 2 — y, sin 2¢)],
(A5)
where 2’ cos 20 — x, sin 20 = z,".
Substituting Eq. (A5) into Eq. (21), we have

’

r4
Ad,, = —A0 sin 81{% ~ 2 cos 26 sin ¢
2o

X (sin d + ? cos ¢>):|

0
+ Ad)[sin 8, sin Ze(sin 26 + 22 cos 24,)
29

+ cos 81(cos 2¢ - yo,, sin 24))} .
2y

(A6)

When B = 8,5, vy = 90° — 8,, we replace sin 3, and cos
3, in Eq. (A5) with cos 8, and sin 3,, respectively, and
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we have

d(B, v, 6, &, A, Ad) — dy(B, v, 8, d)
= 2A8 cos d,[2 cos 28 sin db(2y" sin & + y, cos )
—2zy'] + 2A¢[cos 8, sin 20(z," sin 2¢
+ y, cos 2¢) + sin 3,(z," cos 2d — y, sin 2d)].

(A7)
On substituting Eq. (A7) into Eq. (28), we have

AB,, = A cos 82[1 — 2 cos 28 sin ¢

zy" . Yo
X ( ©sind + ,cosd))}
29 20
. FAN Yo
— A(b[cos 9, sin 20(*[ sin 2¢ + 7~ cos 2d>)
20 2y
(A8)

’

2o 2y

Z "
+ sin 62(0 cos 2 — yfo} sin 2d))] .

Equations (A6) and (A8) are Egs. (31) and (32), re-
spectively.
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